Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
import streamlit as st | |
from tapas import tqa, t5_tokenizer, t5_model | |
# Assuming 'df' is the DataFrame you are using and has numeric columns | |
df_numeric = df.select_dtypes(include='number') | |
# Ensure that `column_name` is defined and valid | |
column_name = None # Make sure this is defined later from TAPAS response | |
# User input for the question | |
question = st.text_input('Type your question') | |
# Process the answer using TAPAS and T5 | |
with st.spinner(): | |
if st.button('Answer'): | |
try: | |
# Get the raw answer from TAPAS | |
raw_answer = tqa(table=df, query=question, truncation=True) | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result From TAPAS: </p>", unsafe_allow_html=True) | |
st.success(raw_answer) | |
# Extract relevant information from the TAPAS result | |
answer = raw_answer['answer'] | |
aggregator = raw_answer.get('aggregator', '') | |
coordinates = raw_answer.get('coordinates', []) | |
cells = raw_answer.get('cells', []) | |
# Extract the column name based on coordinates | |
if coordinates: | |
row, col = coordinates[0] # assuming single cell result | |
column_name = df.columns[col] # Get the column name | |
# Construct a base sentence replacing 'SUM' with the query term | |
base_sentence = f"The {question.lower()} of the selected data is {answer}." | |
if coordinates and cells: | |
rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}" | |
for coordinate, cell in zip(coordinates, cells)] | |
rows_description = " and ".join(rows_info) | |
base_sentence += f" This includes the following data: {rows_description}." | |
# Generate a fluent response using the T5 model, rephrasing the base sentence | |
input_text = f"Given the question: '{question}', generate a more human-readable response: {base_sentence}" | |
# Tokenize the input and generate a fluent response using T5 | |
inputs = t5_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) | |
summary_ids = t5_model.generate(inputs, max_length=150, num_beams=4, early_stopping=True) | |
# Decode the generated text | |
generated_text = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# Display the final generated response | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Final Generated Response with LLM: </p>", unsafe_allow_html=True) | |
st.success(generated_text) | |
except Exception as e: | |
st.warning("Please retype your question and make sure to use the column name and cell value correctly.") | |
# Manually fix the aggregator if it returns an incorrect one | |
if 'MEDIAN' in question.upper() and 'AVERAGE' in aggregator.upper(): | |
aggregator = 'MEDIAN' | |
elif 'MIN' in question.upper() and 'AVERAGE' in aggregator.upper(): | |
aggregator = 'MIN' | |
elif 'MAX' in question.upper() and 'AVERAGE' in aggregator.upper(): | |
aggregator = 'MAX' | |
elif 'TOTAL' in question.upper() and 'SUM' in aggregator.upper(): | |
aggregator = 'SUM' | |
# Use the corrected aggregator for further processing | |
summary_type = aggregator.lower() | |
# Check if `column_name` is valid before proceeding | |
if column_name and column_name in df_numeric.columns: | |
# Now, calculate the correct value using pandas based on the corrected aggregator | |
if summary_type == 'sum': | |
numeric_value = df_numeric[column_name].sum() | |
elif summary_type == 'max': | |
numeric_value = df_numeric[column_name].max() | |
elif summary_type == 'min': | |
numeric_value = df_numeric[column_name].min() | |
elif summary_type == 'average': | |
numeric_value = df_numeric[column_name].mean() | |
elif summary_type == 'count': | |
numeric_value = df_numeric[column_name].count() | |
elif summary_type == 'median': | |
numeric_value = df_numeric[column_name].median() | |
elif summary_type == 'std_dev': | |
numeric_value = df_numeric[column_name].std() | |
else: | |
numeric_value = answer # Fallback if something went wrong | |
else: | |
numeric_value = "Invalid column" | |
# Construct a natural language response | |
if summary_type == 'sum': | |
natural_language_answer = f"The total {column_name} is {numeric_value}." | |
elif summary_type == 'maximum': | |
natural_language_answer = f"The highest {column_name} is {numeric_value}." | |
elif summary_type == 'minimum': | |
natural_language_answer = f"The lowest {column_name} is {numeric_value}." | |
elif summary_type == 'average': | |
natural_language_answer = f"The average {column_name} is {numeric_value}." | |
elif summary_type == 'count': | |
natural_language_answer = f"The number of entries in {column_name} is {numeric_value}." | |
elif summary_type == 'median': | |
natural_language_answer = f"The median {column_name} is {numeric_value}." | |
elif summary_type == 'std_dev': | |
natural_language_answer = f"The standard deviation of {column_name} is {numeric_value}." | |
else: | |
natural_language_answer = f"The value for {column_name} is {numeric_value}." | |
# Display the result to the user | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Analysis Results: </p>", unsafe_allow_html=True) | |
st.success(f""" | |
• Answer: {natural_language_answer} | |
Data Location: | |
• Column: {column_name} | |
Additional Context: | |
• Query Asked: "{question}" | |
""") | |