import os import pandas as pd import streamlit as st from tapas import tqa, t5_tokenizer, t5_model # Assuming 'df' is the DataFrame you are using and has numeric columns df_numeric = df.select_dtypes(include='number') # Ensure that `column_name` is defined and valid column_name = None # Make sure this is defined later from TAPAS response # User input for the question question = st.text_input('Type your question') # Process the answer using TAPAS and T5 with st.spinner(): if st.button('Answer'): try: # Get the raw answer from TAPAS raw_answer = tqa(table=df, query=question, truncation=True) st.markdown("
Raw Result From TAPAS:
", unsafe_allow_html=True) st.success(raw_answer) # Extract relevant information from the TAPAS result answer = raw_answer['answer'] aggregator = raw_answer.get('aggregator', '') coordinates = raw_answer.get('coordinates', []) cells = raw_answer.get('cells', []) # Extract the column name based on coordinates if coordinates: row, col = coordinates[0] # assuming single cell result column_name = df.columns[col] # Get the column name # Construct a base sentence replacing 'SUM' with the query term base_sentence = f"The {question.lower()} of the selected data is {answer}." if coordinates and cells: rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}" for coordinate, cell in zip(coordinates, cells)] rows_description = " and ".join(rows_info) base_sentence += f" This includes the following data: {rows_description}." # Generate a fluent response using the T5 model, rephrasing the base sentence input_text = f"Given the question: '{question}', generate a more human-readable response: {base_sentence}" # Tokenize the input and generate a fluent response using T5 inputs = t5_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) summary_ids = t5_model.generate(inputs, max_length=150, num_beams=4, early_stopping=True) # Decode the generated text generated_text = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Display the final generated response st.markdown("Final Generated Response with LLM:
", unsafe_allow_html=True) st.success(generated_text) except Exception as e: st.warning("Please retype your question and make sure to use the column name and cell value correctly.") # Manually fix the aggregator if it returns an incorrect one if 'MEDIAN' in question.upper() and 'AVERAGE' in aggregator.upper(): aggregator = 'MEDIAN' elif 'MIN' in question.upper() and 'AVERAGE' in aggregator.upper(): aggregator = 'MIN' elif 'MAX' in question.upper() and 'AVERAGE' in aggregator.upper(): aggregator = 'MAX' elif 'TOTAL' in question.upper() and 'SUM' in aggregator.upper(): aggregator = 'SUM' # Use the corrected aggregator for further processing summary_type = aggregator.lower() # Check if `column_name` is valid before proceeding if column_name and column_name in df_numeric.columns: # Now, calculate the correct value using pandas based on the corrected aggregator if summary_type == 'sum': numeric_value = df_numeric[column_name].sum() elif summary_type == 'max': numeric_value = df_numeric[column_name].max() elif summary_type == 'min': numeric_value = df_numeric[column_name].min() elif summary_type == 'average': numeric_value = df_numeric[column_name].mean() elif summary_type == 'count': numeric_value = df_numeric[column_name].count() elif summary_type == 'median': numeric_value = df_numeric[column_name].median() elif summary_type == 'std_dev': numeric_value = df_numeric[column_name].std() else: numeric_value = answer # Fallback if something went wrong else: numeric_value = "Invalid column" # Construct a natural language response if summary_type == 'sum': natural_language_answer = f"The total {column_name} is {numeric_value}." elif summary_type == 'maximum': natural_language_answer = f"The highest {column_name} is {numeric_value}." elif summary_type == 'minimum': natural_language_answer = f"The lowest {column_name} is {numeric_value}." elif summary_type == 'average': natural_language_answer = f"The average {column_name} is {numeric_value}." elif summary_type == 'count': natural_language_answer = f"The number of entries in {column_name} is {numeric_value}." elif summary_type == 'median': natural_language_answer = f"The median {column_name} is {numeric_value}." elif summary_type == 'std_dev': natural_language_answer = f"The standard deviation of {column_name} is {numeric_value}." else: natural_language_answer = f"The value for {column_name} is {numeric_value}." # Display the result to the user st.markdown("Analysis Results:
", unsafe_allow_html=True) st.success(f""" • Answer: {natural_language_answer} Data Location: • Column: {column_name} Additional Context: • Query Asked: "{question}" """)