File size: 3,746 Bytes
bc8fae9
7797cc9
bc8fae9
0a39414
bc8fae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a39414
bc8fae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a39414
bc8fae9
 
0a39414
bc8fae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import streamlit as st
from st_aggrid import AgGrid
import pandas as pd
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer

# Set the page layout for Streamlit
st.set_page_config(layout="wide")

# CSS styling
# ... (keep your existing CSS code)

# Initialize TAPAS pipeline
tqa = pipeline(task="table-question-answering", 
              model="google/tapas-large-finetuned-wtq",
              device="cpu")

# Initialize T5 tokenizer and model for text generation
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")

# File uploader in the sidebar
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx'])

# File processing and question answering
if file_name is None:
    st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
else:
    try:
        # Check file type and handle reading accordingly
        if file_name.name.endswith('.csv'):
            df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1')  # Adjust encoding if needed
        elif file_name.name.endswith('.xlsx'):
            df = pd.read_excel(file_name, engine='openpyxl')  # Use openpyxl to read .xlsx files
        else:
            st.error("Unsupported file type")
            df = None

        if df is not None:
            numeric_columns = df.select_dtypes(include=['object']).columns
            for col in numeric_columns:
                df[col] = pd.to_numeric(df[col], errors='ignore')

            st.write("Original Data:")
            st.write(df)

            df_numeric = df.copy()
            df = df.astype(str)

            # Display the first 5 rows of the dataframe in an editable grid
            grid_response = AgGrid(
                df.head(5),
                columns_auto_size_mode='FIT_CONTENTS',
                editable=True, 
                height=300, 
                width='100%',
            )
            
    except Exception as e:
        st.error(f"Error reading file: {str(e)}")

    # User input for the question
    question = st.text_input('Type your question')

    # Process the answer using TAPAS and T5
    with st.spinner():
        if st.button('Answer'):
            try:
                raw_answer = tqa(table=df, query=question, truncation=True)
                
                st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result From TAPAS: </p>",
                           unsafe_allow_html=True)
                st.success(raw_answer)
                
                answer = raw_answer['answer']
                aggregator = raw_answer.get('aggregator', '')
                coordinates = raw_answer.get('coordinates', [])
                cells = raw_answer.get('cells', [])
                
                if aggregator == 'SUM':
                    # Convert cell values to numbers and sum them
                    values = [float(cell) for cell in cells if cell.replace('.', '').isdigit()]
                    total_sum = sum(values)
                    base_sentence = f"The sum for '{question}' is {total_sum}."
                else:
                    # Construct a base sentence for other aggregators or no aggregation
                    base_sentence = f"The answer from TAPAS for '{question}' is {answer}."
                    if coordinates and cells:
                        rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}" 
                                     for coordinate, cell in zip(coordinates, cells)]
                        rows_description = " and ".join(rows_info)
                        base_sentence += f" This includes the following data: