Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,57 +1,92 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
if df is not None:
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
for q, a in st.session_state['question_history'][-5:]: # Show last 5 questions
|
| 48 |
-
st.write(f"**Q:** {q}")
|
| 49 |
-
st.write(f"**A:** {a}")
|
| 50 |
-
st.write("---")
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
st.session_state['question_history'] = []
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import streamlit as st
|
| 3 |
+
from st_aggrid import AgGrid
|
| 4 |
import pandas as pd
|
| 5 |
+
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
|
| 6 |
+
|
| 7 |
+
# Set the page layout for Streamlit
|
| 8 |
+
st.set_page_config(layout="wide")
|
| 9 |
+
|
| 10 |
+
# CSS styling
|
| 11 |
+
# ... (keep your existing CSS code)
|
| 12 |
+
|
| 13 |
+
# Initialize TAPAS pipeline
|
| 14 |
+
tqa = pipeline(task="table-question-answering",
|
| 15 |
+
model="google/tapas-large-finetuned-wtq",
|
| 16 |
+
device="cpu")
|
| 17 |
+
|
| 18 |
+
# Initialize T5 tokenizer and model for text generation
|
| 19 |
+
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
| 20 |
+
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
| 21 |
+
|
| 22 |
+
# File uploader in the sidebar
|
| 23 |
+
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx'])
|
| 24 |
+
|
| 25 |
+
# File processing and question answering
|
| 26 |
+
if file_name is None:
|
| 27 |
+
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
|
| 28 |
+
else:
|
| 29 |
+
try:
|
| 30 |
+
# Check file type and handle reading accordingly
|
| 31 |
+
if file_name.name.endswith('.csv'):
|
| 32 |
+
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed
|
| 33 |
+
elif file_name.name.endswith('.xlsx'):
|
| 34 |
+
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files
|
| 35 |
+
else:
|
| 36 |
+
st.error("Unsupported file type")
|
| 37 |
+
df = None
|
| 38 |
+
|
| 39 |
if df is not None:
|
| 40 |
+
numeric_columns = df.select_dtypes(include=['object']).columns
|
| 41 |
+
for col in numeric_columns:
|
| 42 |
+
df[col] = pd.to_numeric(df[col], errors='ignore')
|
| 43 |
+
|
| 44 |
+
st.write("Original Data:")
|
| 45 |
+
st.write(df)
|
| 46 |
+
|
| 47 |
+
df_numeric = df.copy()
|
| 48 |
+
df = df.astype(str)
|
| 49 |
+
|
| 50 |
+
# Display the first 5 rows of the dataframe in an editable grid
|
| 51 |
+
grid_response = AgGrid(
|
| 52 |
+
df.head(5),
|
| 53 |
+
columns_auto_size_mode='FIT_CONTENTS',
|
| 54 |
+
editable=True,
|
| 55 |
+
height=300,
|
| 56 |
+
width='100%',
|
| 57 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
except Exception as e:
|
| 60 |
+
st.error(f"Error reading file: {str(e)}")
|
|
|
|
| 61 |
|
| 62 |
+
# User input for the question
|
| 63 |
+
question = st.text_input('Type your question')
|
| 64 |
+
|
| 65 |
+
# Process the answer using TAPAS and T5
|
| 66 |
+
with st.spinner():
|
| 67 |
+
if st.button('Answer'):
|
| 68 |
+
try:
|
| 69 |
+
raw_answer = tqa(table=df, query=question, truncation=True)
|
| 70 |
+
|
| 71 |
+
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result From TAPAS: </p>",
|
| 72 |
+
unsafe_allow_html=True)
|
| 73 |
+
st.success(raw_answer)
|
| 74 |
+
|
| 75 |
+
answer = raw_answer['answer']
|
| 76 |
+
aggregator = raw_answer.get('aggregator', '')
|
| 77 |
+
coordinates = raw_answer.get('coordinates', [])
|
| 78 |
+
cells = raw_answer.get('cells', [])
|
| 79 |
+
|
| 80 |
+
if aggregator == 'SUM':
|
| 81 |
+
# Convert cell values to numbers and sum them
|
| 82 |
+
values = [float(cell) for cell in cells if cell.replace('.', '').isdigit()]
|
| 83 |
+
total_sum = sum(values)
|
| 84 |
+
base_sentence = f"The sum for '{question}' is {total_sum}."
|
| 85 |
+
else:
|
| 86 |
+
# Construct a base sentence for other aggregators or no aggregation
|
| 87 |
+
base_sentence = f"The answer from TAPAS for '{question}' is {answer}."
|
| 88 |
+
if coordinates and cells:
|
| 89 |
+
rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}"
|
| 90 |
+
for coordinate, cell in zip(coordinates, cells)]
|
| 91 |
+
rows_description = " and ".join(rows_info)
|
| 92 |
+
base_sentence += f" This includes the following data:
|