Spaces:
Running
Running
File size: 6,843 Bytes
97b07c2 98bef5d 97b07c2 e69cc97 97b07c2 1e3aa94 97b07c2 be69684 1e3aa94 97b07c2 1e3aa94 be69684 97b07c2 be69684 97b07c2 eaa1fa5 97b07c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import streamlit as st
from st_aggrid import AgGrid
import pandas as pd
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
import plotly.express as px
# Set the page layout for Streamlit
st.set_page_config(layout="wide")
# Initialize TAPAS pipeline
tqa = pipeline(task="table-question-answering",
model="google/tapas-large-finetuned-wtq",
device="cpu")
# Initialize T5 tokenizer and model for text generation
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
# Title and Introduction
st.title("Table Question Answering and Data Analysis App")
st.markdown("""
This app allows you to upload a table (CSV or Excel) and ask questions about the data.
Based on your question, it will provide the corresponding answer using the **TAPAS** model and additional data processing.
### Available Features:
- **mean()**: For "average", it computes the mean of the entire numeric DataFrame.
- **sum()**: For "sum", it calculates the sum of all numeric values in the DataFrame.
- **max()**: For "max", it computes the maximum value in the DataFrame.
- **min()**: For "min", it computes the minimum value in the DataFrame.
- **count()**: For "count", it counts the non-null values in the entire DataFrame.
- **Graph Generation**: You can ask questions like "make a graph of column sales?" or "make a graph between sales and expenses?". The app will generate interactive graphs for you.
Upload your data and ask questions to get both answers and visualizations.
""")
# File uploader in the sidebar
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx'])
# File processing and question answering
if file_name is None:
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
else:
try:
# Check file type and handle reading accordingly
if file_name.name.endswith('.csv'):
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed
elif file_name.name.endswith('.xlsx'):
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files
else:
st.error("Unsupported file type")
df = None
if df is not None:
numeric_columns = df.select_dtypes(include=['object']).columns
for col in numeric_columns:
df[col] = pd.to_numeric(df[col], errors='ignore')
st.write("Original Data:")
st.write(df)
df_numeric = df.copy()
df = df.astype(str)
# Display the first 5 rows of the dataframe in an editable grid
grid_response = AgGrid(
df.head(5),
fit_columns_on_grid_load=True, # Correct parameter to fit columns on grid load
editable=True,
height=300,
width='100%',
)
except Exception as e:
st.error(f"Error reading file: {str(e)}")
# User input for the question
question = st.text_input('Type your question')
# Check if the question is about generating a graph
is_graph_query = False
if 'graph' in question.lower():
is_graph_query = True
# Process the answer using TAPAS and T5
with st.spinner():
if st.button('Answer'):
try:
if not is_graph_query:
# Process TAPAS-related questions if it's not a graph query
raw_answer = tqa(table=df, query=question, truncation=True)
# Display raw answer from TAPAS on the screen
st.markdown("<p style='font-family:sans-serif;font-size: 1rem;'>Raw TAPAS Answer: </p>", unsafe_allow_html=True)
st.write(raw_answer) # Display the raw TAPAS output
# Extract relevant values for Plotly
answer = raw_answer.get('answer', '')
coordinates = raw_answer.get('coordinates', [])
cells = raw_answer.get('cells', [])
st.markdown("<p style='font-family:sans-serif;font-size: 1rem;'>Relevant Data for Plotly: </p>", unsafe_allow_html=True)
st.write(f"Answer: {answer}")
st.write(f"Coordinates: {coordinates}")
st.write(f"Cells: {cells}")
# If TAPAS is returning a list of numbers for "average" like you mentioned
if "average" in question.lower() and cells:
# Assuming cells are numeric values that can be plotted in a graph
plot_data = [float(cell) for cell in cells] # Convert cells to numeric data
# Create a DataFrame for Plotly
plot_df = pd.DataFrame({ 'Index': list(range(1, len(plot_data) + 1)), 'Value': plot_data })
# Generate a graph using Plotly
fig = px.line(plot_df, x='Index', y='Value', title=f"Graph for '{question}'")
st.plotly_chart(fig, use_container_width=True)
else:
st.write(f"No data to plot for the question: '{question}'")
else:
# Handle graph-related questions
if 'between' in question.lower() and 'and' in question.lower():
columns = question.split('between')[-1].split('and')
columns = [col.strip() for col in columns]
if len(columns) == 2 and all(col in df.columns for col in columns):
fig = px.scatter(df, x=columns[0], y=columns[1], title=f"Graph between {columns[0]} and {columns[1]}")
st.plotly_chart(fig, use_container_width=True)
st.success(f"Here is the graph between '{columns[0]}' and '{columns[1]}'.")
else:
st.warning("Columns not found in the dataset.")
elif 'column' in question.lower():
column = question.split('of')[-1].strip()
if column in df.columns:
fig = px.line(df, x=df.index, y=column, title=f"Graph of column '{column}'")
st.plotly_chart(fig, use_container_width=True)
st.stop() # This halts further execution
except Exception as e:
st.warning(f"Error processing question or generating answer: {str(e)}")
st.warning("Please retype your question and make sure to use the column name and cell value correctly.")
|