Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from st_aggrid import AgGrid
|
4 |
+
import pandas as pd
|
5 |
+
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
|
6 |
+
import plotly.express as px
|
7 |
+
|
8 |
+
# Set the page layout for Streamlit
|
9 |
+
st.set_page_config(layout="wide")
|
10 |
+
|
11 |
+
# Initialize TAPAS pipeline
|
12 |
+
tqa = pipeline(task="table-question-answering",
|
13 |
+
model="google/tapas-large-finetuned-wtq",
|
14 |
+
device="cpu")
|
15 |
+
|
16 |
+
# Initialize T5 tokenizer and model for text generation
|
17 |
+
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
18 |
+
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
19 |
+
|
20 |
+
# Title and Introduction
|
21 |
+
st.title("Table Question Answering and Data Analysis App")
|
22 |
+
st.markdown("""
|
23 |
+
This app allows you to upload a table (CSV or Excel) and ask questions about the data.
|
24 |
+
Based on your question, it will provide the corresponding answer using the **TAPAS** model and additional data processing.
|
25 |
+
|
26 |
+
### Available Features:
|
27 |
+
- **mean()**: For "average", it computes the mean of the entire numeric DataFrame.
|
28 |
+
- **sum()**: For "sum", it calculates the sum of all numeric values in the DataFrame.
|
29 |
+
- **max()**: For "max", it computes the maximum value in the DataFrame.
|
30 |
+
- **min()**: For "min", it computes the minimum value in the DataFrame.
|
31 |
+
- **count()**: For "count", it counts the non-null values in the entire DataFrame.
|
32 |
+
- **Graph Generation**: You can ask questions like "make a graph of column sales?" or "make a graph between sales and expenses?". The app will generate interactive graphs for you.
|
33 |
+
|
34 |
+
Upload your data and ask questions to get both answers and visualizations.
|
35 |
+
""")
|
36 |
+
|
37 |
+
# File uploader in the sidebar
|
38 |
+
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx'])
|
39 |
+
|
40 |
+
# File processing and question answering
|
41 |
+
if file_name is None:
|
42 |
+
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
|
43 |
+
else:
|
44 |
+
try:
|
45 |
+
# Check file type and handle reading accordingly
|
46 |
+
if file_name.name.endswith('.csv'):
|
47 |
+
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed
|
48 |
+
elif file_name.name.endswith('.xlsx'):
|
49 |
+
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files
|
50 |
+
else:
|
51 |
+
st.error("Unsupported file type")
|
52 |
+
df = None
|
53 |
+
|
54 |
+
if df is not None:
|
55 |
+
numeric_columns = df.select_dtypes(include=['object']).columns
|
56 |
+
for col in numeric_columns:
|
57 |
+
df[col] = pd.to_numeric(df[col], errors='ignore')
|
58 |
+
|
59 |
+
st.write("Original Data:")
|
60 |
+
st.write(df)
|
61 |
+
|
62 |
+
df_numeric = df.copy()
|
63 |
+
df = df.astype(str)
|
64 |
+
|
65 |
+
# Display the first 5 rows of the dataframe in an editable grid
|
66 |
+
grid_response = AgGrid(
|
67 |
+
df.head(5),
|
68 |
+
columns_auto_size_mode='FIT_CONTENTS',
|
69 |
+
editable=True,
|
70 |
+
height=300,
|
71 |
+
width='100%',
|
72 |
+
)
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"Error reading file: {str(e)}")
|
76 |
+
|
77 |
+
# User input for the question
|
78 |
+
question = st.text_input('Type your question')
|
79 |
+
|
80 |
+
# Process the answer using TAPAS and T5
|
81 |
+
with st.spinner():
|
82 |
+
if st.button('Answer'):
|
83 |
+
try:
|
84 |
+
raw_answer = tqa(table=df, query=question, truncation=True)
|
85 |
+
|
86 |
+
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result From TAPAS: </p>",
|
87 |
+
unsafe_allow_html=True)
|
88 |
+
st.success(raw_answer)
|
89 |
+
|
90 |
+
answer = raw_answer['answer']
|
91 |
+
aggregator = raw_answer.get('aggregator', '')
|
92 |
+
coordinates = raw_answer.get('coordinates', [])
|
93 |
+
cells = raw_answer.get('cells', [])
|
94 |
+
|
95 |
+
# Handle aggregation based on user question or TAPAS output
|
96 |
+
if 'average' in question.lower() or aggregator == 'AVG':
|
97 |
+
avg_value = df.mean().mean() # Calculate overall average
|
98 |
+
base_sentence = f"The average for '{question}' is {avg_value:.2f}."
|
99 |
+
elif 'sum' in question.lower() or aggregator == 'SUM':
|
100 |
+
total_sum = df.sum().sum() # Calculate overall sum
|
101 |
+
base_sentence = f"The sum for '{question}' is {total_sum:.2f}."
|
102 |
+
elif 'max' in question.lower() or aggregator == 'MAX':
|
103 |
+
max_value = df.max().max() # Find overall max value
|
104 |
+
base_sentence = f"The maximum value for '{question}' is {max_value:.2f}."
|
105 |
+
elif 'min' in question.lower() or aggregator == 'MIN':
|
106 |
+
min_value = df.min().min() # Find overall min value
|
107 |
+
base_sentence = f"The minimum value for '{question}' is {min_value:.2f}."
|
108 |
+
elif 'count' in question.lower() or aggregator == 'COUNT':
|
109 |
+
count_value = df.count().sum() # Count all values
|
110 |
+
base_sentence = f"The total count of non-null values for '{question}' is {count_value}."
|
111 |
+
elif 'graph' in question.lower():
|
112 |
+
# Check for graph-related queries
|
113 |
+
if 'between' in question.lower() and 'and' in question.lower():
|
114 |
+
columns = question.split('between')[-1].split('and')
|
115 |
+
columns = [col.strip() for col in columns]
|
116 |
+
if len(columns) == 2 and all(col in df.columns for col in columns):
|
117 |
+
fig = px.scatter(df, x=columns[0], y=columns[1], title=f"Graph between {columns[0]} and {columns[1]}")
|
118 |
+
st.plotly_chart(fig, use_container_width=True)
|
119 |
+
base_sentence = f"Here is the graph between '{columns[0]}' and '{columns[1]}'."
|
120 |
+
elif 'column' in question.lower():
|
121 |
+
column = question.split('of')[-1].strip()
|
122 |
+
if column in df.columns:
|
123 |
+
fig = px.line(df, x=df.index, y=column, title=f"Graph of column '{column}'")
|
124 |
+
st.plotly_chart(fig, use_container_width=True)
|
125 |
+
base_sentence = f"Here is the graph of column '{column}'."
|
126 |
+
else:
|
127 |
+
base_sentence = f"Column '{column}' not found in the data."
|
128 |
+
else:
|
129 |
+
base_sentence = f"The answer from TAPAS for '{question}' is {answer}."
|
130 |
+
|
131 |
+
# Display the final response
|
132 |
+
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Final Generated Response: </p>", unsafe_allow_html=True)
|
133 |
+
st.success(base_sentence)
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
st.warning(f"Error processing question or generating answer: {str(e)}")
|
137 |
+
st.warning("Please retype your question and make sure to use the column name and cell value correctly.")
|