Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load pre-trained DialoGPT-small model and tokenizer | |
model_name = "microsoft/DialoGPT-small" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Set device to GPU if available for faster inference, otherwise fallback to CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Initialize chat history | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
def generate_response(input_text): | |
# Encode the new user input, add end of string token | |
new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt').to(device) | |
# Append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.tensor(st.session_state['history']).to(device), new_user_input_ids], dim=-1) if st.session_state['history'] else new_user_input_ids | |
# Generate a response from the model | |
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, top_k=50, top_p=0.95, temperature=0.7) | |
# Decode the model's output and add it to the history | |
chat_history_ids = chat_history_ids[:, bot_input_ids.shape[-1]:] # only take the latest generated tokens | |
bot_output = tokenizer.decode(chat_history_ids[0], skip_special_tokens=True) | |
# Update session state history with the new tokens | |
st.session_state['history'] = chat_history_ids[0].tolist() | |
return bot_output | |
# Streamlit Interface | |
st.title("Chat with DialoGPT") | |
# Create input box for user | |
user_input = st.text_input("You: ", "") | |
if user_input: | |
# Generate and display the bot's response | |
response = generate_response(user_input) | |
st.write(f"Bot: {response}") | |