import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load pre-trained DialoGPT-small model and tokenizer model_name = "microsoft/DialoGPT-small" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Set device to GPU if available for faster inference, otherwise fallback to CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Initialize chat history if 'history' not in st.session_state: st.session_state['history'] = [] def generate_response(input_text): # Encode the new user input, add end of string token new_user_input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt').to(device) # Append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.tensor(st.session_state['history']).to(device), new_user_input_ids], dim=-1) if st.session_state['history'] else new_user_input_ids # Generate a response from the model chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, top_k=50, top_p=0.95, temperature=0.7) # Decode the model's output and add it to the history chat_history_ids = chat_history_ids[:, bot_input_ids.shape[-1]:] # only take the latest generated tokens bot_output = tokenizer.decode(chat_history_ids[0], skip_special_tokens=True) # Update session state history with the new tokens st.session_state['history'] = chat_history_ids[0].tolist() return bot_output # Streamlit Interface st.title("Chat with DialoGPT") # Create input box for user user_input = st.text_input("You: ", "") if user_input: # Generate and display the bot's response response = generate_response(user_input) st.write(f"Bot: {response}")