Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import numpy as np | |
from loguru import logger | |
from tqdm import tqdm | |
from dotenv import load_dotenv | |
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score, precision_score, recall_score | |
from .utils.evaluation import ImageEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from ultralytics import YOLO | |
from ultralytics import RTDETR | |
from torch.utils.data import DataLoader | |
from torchvision import transforms | |
from dotenv import load_dotenv | |
load_dotenv() | |
router = APIRouter() | |
DESCRIPTION = "Image to detect smoke" | |
ROUTE = "/image" | |
device = torch.device("cuda") | |
def parse_boxes(annotation_string): | |
"""Parse multiple boxes from a single annotation string. | |
Each box has 5 values: class_id, x_center, y_center, width, height""" | |
values = [float(x) for x in annotation_string.strip().split()] | |
boxes = [] | |
# Each box has 5 values | |
for i in range(0, len(values), 5): | |
if i + 5 <= len(values): | |
# Skip class_id (first value) and take the next 4 values | |
box = values[i + 1:i + 5] | |
boxes.append(box) | |
return boxes | |
def compute_iou(box1, box2): | |
"""Compute Intersection over Union (IoU) between two YOLO format boxes.""" | |
# Convert YOLO format (x_center, y_center, width, height) to corners | |
def yolo_to_corners(box): | |
x_center, y_center, width, height = box | |
x1 = x_center - width / 2 | |
y1 = y_center - height / 2 | |
x2 = x_center + width / 2 | |
y2 = y_center + height / 2 | |
return np.array([x1, y1, x2, y2]) | |
box1_corners = yolo_to_corners(box1) | |
box2_corners = yolo_to_corners(box2) | |
# Calculate intersection | |
x1 = max(box1_corners[0], box2_corners[0]) | |
y1 = max(box1_corners[1], box2_corners[1]) | |
x2 = min(box1_corners[2], box2_corners[2]) | |
y2 = min(box1_corners[3], box2_corners[3]) | |
intersection = max(0, x2 - x1) * max(0, y2 - y1) | |
# Calculate union | |
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1]) | |
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1]) | |
union = box1_area + box2_area - intersection | |
return intersection / (union + 1e-6) | |
def compute_max_iou(true_boxes, pred_box): | |
"""Compute maximum IoU between a predicted box and all true boxes""" | |
max_iou = 0 | |
for true_box in true_boxes: | |
iou = compute_iou(true_box, pred_box) | |
max_iou = max(max_iou, iou) | |
return max_iou | |
class ClampTransform: | |
def __init__(self, min_val=0.0, max_val=1.0): | |
self.min_val = min_val | |
self.max_val = max_val | |
def __call__(self, tensor): | |
return torch.clamp(tensor, min=self.min_val, max=self.max_val) | |
def collate_fn(batch): | |
images = [item['image'] for item in batch] | |
annotations = [item.get('annotations', '') for item in batch] | |
# Convert PIL Images to tensors | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
ClampTransform(min_val=0.0, max_val=1.0), | |
transforms.Resize((640, 640)) | |
]) | |
images = [transform(img) for img in images] | |
images = torch.stack(images) | |
return {'image': images, 'annotations': annotations} | |
def parse_boxes(annotation_string): | |
"""Parse multiple boxes from a single annotation string. | |
Each box has 5 values: class_id, x_center, y_center, width, height""" | |
values = [float(x) for x in annotation_string.strip().split()] | |
boxes = [] | |
# Each box has 5 values | |
for i in range(0, len(values), 5): | |
if i + 5 <= len(values): | |
# Skip class_id (first value) and take the next 4 values | |
box = values[i+1:i+5] | |
boxes.append(box) | |
return boxes | |
def compute_iou(box1, box2): | |
"""Compute Intersection over Union (IoU) between two YOLO format boxes.""" | |
# Convert YOLO format (x_center, y_center, width, height) to corners | |
def yolo_to_corners(box): | |
x_center, y_center, width, height = box | |
x1 = x_center - width/2 | |
y1 = y_center - height/2 | |
x2 = x_center + width/2 | |
y2 = y_center + height/2 | |
return np.array([x1, y1, x2, y2]) | |
box1_corners = yolo_to_corners(box1) | |
box2_corners = yolo_to_corners(box2) | |
# Calculate intersection | |
x1 = max(box1_corners[0], box2_corners[0]) | |
y1 = max(box1_corners[1], box2_corners[1]) | |
x2 = min(box1_corners[2], box2_corners[2]) | |
y2 = min(box1_corners[3], box2_corners[3]) | |
intersection = max(0, x2 - x1) * max(0, y2 - y1) | |
# Calculate union | |
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1]) | |
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1]) | |
union = box1_area + box2_area - intersection | |
return intersection / (union + 1e-6) | |
def compute_max_iou(true_boxes, pred_box): | |
"""Compute maximum IoU between a predicted box and all true boxes""" | |
max_iou = 0 | |
for true_box in true_boxes: | |
iou = compute_iou(true_box, pred_box) | |
max_iou = max(max_iou, iou) | |
return max_iou | |
async def evaluate_image(model_path: str = "models/yolo11s_best.pt", request: ImageEvaluationRequest = ImageEvaluationRequest()): | |
""" | |
Evaluate image classification and object detection for forest fire smoke. | |
Current Model: Random Baseline | |
- Makes random predictions for both classification and bounding boxes | |
- Used as a baseline for comparison | |
Metrics: | |
- Classification accuracy: Whether an image contains smoke or not | |
- Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN")) | |
# Split dataset | |
train_test = dataset["train"] | |
test_dataset = dataset["val"] | |
if("yolo" in model_path): | |
model = YOLO(model_path, task="detect") | |
if("detr" in model_path): | |
model = RTDETR(model_path) | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline with your model inference | |
#-------------------------------------------------------------------------------------------- | |
predictions = [] | |
true_labels = [] | |
pred_boxes = [] | |
true_boxes_list = [] # List of lists, each inner list contains boxes for one image | |
for example in tqdm(test_dataset): | |
# Parse true annotation (YOLO format: class_id x_center y_center width height) | |
annotation = example.get("annotations", "").strip() | |
has_smoke = len(annotation) > 0 | |
true_labels.append(int(has_smoke)) | |
image=example["image"] | |
results = model(image, verbose=False) | |
boxes = results[0].boxes.xywh.tolist() | |
pred_has_smoke = len(boxes) > 0 | |
predictions.append(int(pred_has_smoke)) | |
if has_smoke: | |
# If there's a true box, parse it and make box prediction | |
# Parse all true boxes from the annotation | |
image_true_boxes = parse_boxes(annotation) | |
# Predicted bboxes | |
# Iterate through the results | |
for box in boxes: | |
x, y, w, h = box | |
image_width, image_height = image.size | |
x = x / image_width | |
y = y / image_height | |
w_n = w / image_width | |
h_n = h / image_height | |
formatted_box = [x, y, w_n, h_n] | |
pred_boxes.append(formatted_box) | |
true_boxes_list.append(image_true_boxes) | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate classification metrics | |
classification_accuracy = accuracy_score(true_labels, predictions) | |
classification_precision = precision_score(true_labels, predictions) | |
classification_recall = recall_score(true_labels, predictions) | |
# Calculate mean IoU for object detection (only for images with smoke) | |
# For each image, we compute the max IoU between the predicted box and all true boxes | |
ious = [] | |
for true_boxes, pred_box in zip(true_boxes_list, pred_boxes): | |
max_iou = compute_max_iou(true_boxes, pred_box) | |
ious.append(max_iou) | |
mean_iou = float(np.mean(ious)) if ious else 0.0 | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"classification_accuracy": float(classification_accuracy), | |
"classification_precision": float(classification_precision), | |
"classification_recall": float(classification_recall), | |
"mean_iou": mean_iou, | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |