ariel-eddie's picture
Updated Image task with test model inference
61358d9 verified
raw
history blame
9.84 kB
import os
import torch
import numpy as np
from loguru import logger
from tqdm import tqdm
from dotenv import load_dotenv
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score, precision_score, recall_score
from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from ultralytics import YOLO
from ultralytics import RTDETR
from torch.utils.data import DataLoader
from torchvision import transforms
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Image to detect smoke"
ROUTE = "/image"
device = torch.device("cuda")
def parse_boxes(annotation_string):
"""Parse multiple boxes from a single annotation string.
Each box has 5 values: class_id, x_center, y_center, width, height"""
values = [float(x) for x in annotation_string.strip().split()]
boxes = []
# Each box has 5 values
for i in range(0, len(values), 5):
if i + 5 <= len(values):
# Skip class_id (first value) and take the next 4 values
box = values[i + 1:i + 5]
boxes.append(box)
return boxes
def compute_iou(box1, box2):
"""Compute Intersection over Union (IoU) between two YOLO format boxes."""
# Convert YOLO format (x_center, y_center, width, height) to corners
def yolo_to_corners(box):
x_center, y_center, width, height = box
x1 = x_center - width / 2
y1 = y_center - height / 2
x2 = x_center + width / 2
y2 = y_center + height / 2
return np.array([x1, y1, x2, y2])
box1_corners = yolo_to_corners(box1)
box2_corners = yolo_to_corners(box2)
# Calculate intersection
x1 = max(box1_corners[0], box2_corners[0])
y1 = max(box1_corners[1], box2_corners[1])
x2 = min(box1_corners[2], box2_corners[2])
y2 = min(box1_corners[3], box2_corners[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
# Calculate union
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
union = box1_area + box2_area - intersection
return intersection / (union + 1e-6)
def compute_max_iou(true_boxes, pred_box):
"""Compute maximum IoU between a predicted box and all true boxes"""
max_iou = 0
for true_box in true_boxes:
iou = compute_iou(true_box, pred_box)
max_iou = max(max_iou, iou)
return max_iou
class ClampTransform:
def __init__(self, min_val=0.0, max_val=1.0):
self.min_val = min_val
self.max_val = max_val
def __call__(self, tensor):
return torch.clamp(tensor, min=self.min_val, max=self.max_val)
def collate_fn(batch):
images = [item['image'] for item in batch]
annotations = [item.get('annotations', '') for item in batch]
# Convert PIL Images to tensors
transform = transforms.Compose([
transforms.ToTensor(),
ClampTransform(min_val=0.0, max_val=1.0),
transforms.Resize((640, 640))
])
images = [transform(img) for img in images]
images = torch.stack(images)
return {'image': images, 'annotations': annotations}
def parse_boxes(annotation_string):
"""Parse multiple boxes from a single annotation string.
Each box has 5 values: class_id, x_center, y_center, width, height"""
values = [float(x) for x in annotation_string.strip().split()]
boxes = []
# Each box has 5 values
for i in range(0, len(values), 5):
if i + 5 <= len(values):
# Skip class_id (first value) and take the next 4 values
box = values[i+1:i+5]
boxes.append(box)
return boxes
def compute_iou(box1, box2):
"""Compute Intersection over Union (IoU) between two YOLO format boxes."""
# Convert YOLO format (x_center, y_center, width, height) to corners
def yolo_to_corners(box):
x_center, y_center, width, height = box
x1 = x_center - width/2
y1 = y_center - height/2
x2 = x_center + width/2
y2 = y_center + height/2
return np.array([x1, y1, x2, y2])
box1_corners = yolo_to_corners(box1)
box2_corners = yolo_to_corners(box2)
# Calculate intersection
x1 = max(box1_corners[0], box2_corners[0])
y1 = max(box1_corners[1], box2_corners[1])
x2 = min(box1_corners[2], box2_corners[2])
y2 = min(box1_corners[3], box2_corners[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
# Calculate union
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
union = box1_area + box2_area - intersection
return intersection / (union + 1e-6)
def compute_max_iou(true_boxes, pred_box):
"""Compute maximum IoU between a predicted box and all true boxes"""
max_iou = 0
for true_box in true_boxes:
iou = compute_iou(true_box, pred_box)
max_iou = max(max_iou, iou)
return max_iou
@router.post(ROUTE, tags=["Image Task"],
description=DESCRIPTION)
async def evaluate_image(model_path: str = "models/yolo11s_best.pt", request: ImageEvaluationRequest = ImageEvaluationRequest()):
"""
Evaluate image classification and object detection for forest fire smoke.
Current Model: Random Baseline
- Makes random predictions for both classification and bounding boxes
- Used as a baseline for comparison
Metrics:
- Classification accuracy: Whether an image contains smoke or not
- Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
"""
# Get space info
username, space_url = get_space_info()
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["val"]
if("yolo" in model_path):
model = YOLO(model_path, task="detect")
if("detr" in model_path):
model = RTDETR(model_path)
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline with your model inference
#--------------------------------------------------------------------------------------------
predictions = []
true_labels = []
pred_boxes = []
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
for example in tqdm(test_dataset):
# Parse true annotation (YOLO format: class_id x_center y_center width height)
annotation = example.get("annotations", "").strip()
has_smoke = len(annotation) > 0
true_labels.append(int(has_smoke))
image=example["image"]
results = model(image, verbose=False)
boxes = results[0].boxes.xywh.tolist()
pred_has_smoke = len(boxes) > 0
predictions.append(int(pred_has_smoke))
if has_smoke:
# If there's a true box, parse it and make box prediction
# Parse all true boxes from the annotation
image_true_boxes = parse_boxes(annotation)
# Predicted bboxes
# Iterate through the results
for box in boxes:
x, y, w, h = box
image_width, image_height = image.size
x = x / image_width
y = y / image_height
w_n = w / image_width
h_n = h / image_height
formatted_box = [x, y, w_n, h_n]
pred_boxes.append(formatted_box)
true_boxes_list.append(image_true_boxes)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate classification metrics
classification_accuracy = accuracy_score(true_labels, predictions)
classification_precision = precision_score(true_labels, predictions)
classification_recall = recall_score(true_labels, predictions)
# Calculate mean IoU for object detection (only for images with smoke)
# For each image, we compute the max IoU between the predicted box and all true boxes
ious = []
for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
max_iou = compute_max_iou(true_boxes, pred_box)
ious.append(max_iou)
mean_iou = float(np.mean(ious)) if ious else 0.0
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"classification_accuracy": float(classification_accuracy),
"classification_precision": float(classification_precision),
"classification_recall": float(classification_recall),
"mean_iou": mean_iou,
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results