File size: 9,843 Bytes
61358d9
 
 
 
 
 
 
 
4d6e8c2
3b09640
 
998e8ac
3b09640
4d6e8c2
3b09640
 
61358d9
 
 
 
 
3b09640
4d6e8c2
61358d9
4d6e8c2
61358d9
1c33274
70f5f26
61358d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
61358d9
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61358d9
3b09640
 
 
 
 
 
 
 
61358d9
1c33274
61358d9
 
4d6e8c2
3b09640
70f5f26
 
3b09640
70f5f26
3b09640
 
 
 
4d6e8c2
3b09640
4d6e8c2
3b09640
 
 
 
 
1431ab9
0ae53cb
61358d9
 
 
 
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
61358d9
 
3b09640
 
 
 
 
61358d9
 
 
 
 
3b09640
61358d9
3b09640
61358d9
3b09640
 
 
61358d9
 
 
 
 
 
 
 
 
 
 
 
 
3b09640
 
 
 
 
 
 
998e8ac
3b09640
998e8ac
 
3b09640
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
3b09640
70f5f26
3b09640
998e8ac
 
3b09640
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
3b09640
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import torch
import numpy as np

from loguru import logger
from tqdm import tqdm
from dotenv import load_dotenv

from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score, precision_score, recall_score

from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from ultralytics import YOLO
from ultralytics import RTDETR
from torch.utils.data import DataLoader
from torchvision import transforms

from dotenv import load_dotenv

load_dotenv()
router = APIRouter()
DESCRIPTION = "Image to detect smoke"
ROUTE = "/image"

device = torch.device("cuda")

    
def parse_boxes(annotation_string):
    """Parse multiple boxes from a single annotation string.
    Each box has 5 values: class_id, x_center, y_center, width, height"""
    values = [float(x) for x in annotation_string.strip().split()]
    boxes = []
    # Each box has 5 values
    for i in range(0, len(values), 5):
        if i + 5 <= len(values):
            # Skip class_id (first value) and take the next 4 values
            box = values[i + 1:i + 5]
            boxes.append(box)
    return boxes


def compute_iou(box1, box2):
    """Compute Intersection over Union (IoU) between two YOLO format boxes."""

    # Convert YOLO format (x_center, y_center, width, height) to corners
    def yolo_to_corners(box):
        x_center, y_center, width, height = box
        x1 = x_center - width / 2
        y1 = y_center - height / 2
        x2 = x_center + width / 2
        y2 = y_center + height / 2
        return np.array([x1, y1, x2, y2])

    box1_corners = yolo_to_corners(box1)
    box2_corners = yolo_to_corners(box2)

    # Calculate intersection
    x1 = max(box1_corners[0], box2_corners[0])
    y1 = max(box1_corners[1], box2_corners[1])
    x2 = min(box1_corners[2], box2_corners[2])
    y2 = min(box1_corners[3], box2_corners[3])

    intersection = max(0, x2 - x1) * max(0, y2 - y1)

    # Calculate union
    box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
    box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
    union = box1_area + box2_area - intersection

    return intersection / (union + 1e-6)


def compute_max_iou(true_boxes, pred_box):
    """Compute maximum IoU between a predicted box and all true boxes"""
    max_iou = 0
    for true_box in true_boxes:
        iou = compute_iou(true_box, pred_box)
        max_iou = max(max_iou, iou)
    return max_iou


class ClampTransform:
    def __init__(self, min_val=0.0, max_val=1.0):
        self.min_val = min_val
        self.max_val = max_val

    def __call__(self, tensor):
        return torch.clamp(tensor, min=self.min_val, max=self.max_val)


def collate_fn(batch):
    images = [item['image'] for item in batch]
    annotations = [item.get('annotations', '') for item in batch]

    # Convert PIL Images to tensors
    transform = transforms.Compose([
        transforms.ToTensor(),
        ClampTransform(min_val=0.0, max_val=1.0),
        transforms.Resize((640, 640))
    ])

    images = [transform(img) for img in images]
    images = torch.stack(images)
    return {'image': images, 'annotations': annotations}


def parse_boxes(annotation_string):
    """Parse multiple boxes from a single annotation string.
    Each box has 5 values: class_id, x_center, y_center, width, height"""
    values = [float(x) for x in annotation_string.strip().split()]
    boxes = []
    # Each box has 5 values
    for i in range(0, len(values), 5):
        if i + 5 <= len(values):
            # Skip class_id (first value) and take the next 4 values
            box = values[i+1:i+5]
            boxes.append(box)
    return boxes


def compute_iou(box1, box2):
    """Compute Intersection over Union (IoU) between two YOLO format boxes."""
    # Convert YOLO format (x_center, y_center, width, height) to corners
    def yolo_to_corners(box):
        x_center, y_center, width, height = box
        x1 = x_center - width/2
        y1 = y_center - height/2
        x2 = x_center + width/2
        y2 = y_center + height/2
        return np.array([x1, y1, x2, y2])
    
    box1_corners = yolo_to_corners(box1)
    box2_corners = yolo_to_corners(box2)
    
    # Calculate intersection
    x1 = max(box1_corners[0], box2_corners[0])
    y1 = max(box1_corners[1], box2_corners[1])
    x2 = min(box1_corners[2], box2_corners[2])
    y2 = min(box1_corners[3], box2_corners[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    
    # Calculate union
    box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
    box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
    union = box1_area + box2_area - intersection
    
    return intersection / (union + 1e-6)


def compute_max_iou(true_boxes, pred_box):
    """Compute maximum IoU between a predicted box and all true boxes"""
    max_iou = 0
    for true_box in true_boxes:
        iou = compute_iou(true_box, pred_box)
        max_iou = max(max_iou, iou)
    return max_iou


@router.post(ROUTE, tags=["Image Task"],
              description=DESCRIPTION)
async def evaluate_image(model_path: str = "models/yolo11s_best.pt", request: ImageEvaluationRequest = ImageEvaluationRequest()):
    """
    Evaluate image classification and object detection for forest fire smoke.
    
    Current Model: Random Baseline
    - Makes random predictions for both classification and bounding boxes
    - Used as a baseline for comparison
    
    Metrics:
    - Classification accuracy: Whether an image contains smoke or not
    - Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
    """
    # Get space info
    username, space_url = get_space_info()
    
    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
    
    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["val"]
    if("yolo" in model_path):
        model = YOLO(model_path, task="detect")
    if("detr" in model_path):
        model = RTDETR(model_path)
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline with your model inference
    #--------------------------------------------------------------------------------------------   
    
    predictions = []
    true_labels = []
    pred_boxes = []
    true_boxes_list = []  # List of lists, each inner list contains boxes for one image

    for example in tqdm(test_dataset):
        # Parse true annotation (YOLO format: class_id x_center y_center width height)
        annotation = example.get("annotations", "").strip()
        has_smoke = len(annotation) > 0
        true_labels.append(int(has_smoke))
        
        image=example["image"]
        results = model(image, verbose=False)
        boxes = results[0].boxes.xywh.tolist()

        pred_has_smoke = len(boxes) > 0
        predictions.append(int(pred_has_smoke))

        if has_smoke:
            # If there's a true box, parse it and make box prediction
            # Parse all true boxes from the annotation
            image_true_boxes = parse_boxes(annotation)
    
            # Predicted bboxes
            # Iterate through the results
            for box in boxes:
                x, y, w, h = box
                image_width, image_height = image.size
                x = x / image_width
                y = y / image_height
                w_n = w / image_width
                h_n = h / image_height
                formatted_box = [x, y, w_n, h_n]
                pred_boxes.append(formatted_box)
                true_boxes_list.append(image_true_boxes)
            
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate classification metrics
    classification_accuracy = accuracy_score(true_labels, predictions)
    classification_precision = precision_score(true_labels, predictions)
    classification_recall = recall_score(true_labels, predictions)
    
    # Calculate mean IoU for object detection (only for images with smoke)
    # For each image, we compute the max IoU between the predicted box and all true boxes
    ious = []
    for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
        max_iou = compute_max_iou(true_boxes, pred_box)
        ious.append(max_iou)
    
    mean_iou = float(np.mean(ious)) if ious else 0.0
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "classification_accuracy": float(classification_accuracy),
        "classification_precision": float(classification_precision),
        "classification_recall": float(classification_recall),
        "mean_iou": mean_iou,
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results