Spaces:
Runtime error
Runtime error
import yfinance as yf | |
import pandas as pd | |
import numpy as np | |
from prophet import Prophet | |
import plotly.graph_objs as go | |
import plotly.express as px | |
import gradio as gr | |
from pmdarima import auto_arima | |
def forecast_stock(ticker, period, future_days, use_arima): | |
# Fetch data | |
data = yf.Ticker(ticker) | |
df = data.history(period=period) | |
if df.empty: | |
return "Could not retrieve data for the selected ticker." | |
df = df.reset_index() | |
df = df[['Date', 'Close']] | |
df.columns = ['ds', 'y'] | |
df['ds'] = pd.to_datetime(df['ds']).dt.tz_localize(None) | |
df = df.dropna() | |
# Prophet forecast | |
model = Prophet() | |
model.fit(df) | |
future_dates = model.make_future_dataframe(periods=future_days) | |
forecast = model.predict(future_dates) | |
# Create Plotly figure for forecast | |
fig_forecast = go.Figure() | |
fig_forecast.add_trace(go.Scatter(x=df['ds'], y=df['y'], name='Historical')) | |
fig_forecast.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat'], name='Prophet Forecast')) | |
fig_forecast.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat_upper'], name='Prophet Upper Bound', line=dict(dash='dash'))) | |
fig_forecast.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat_lower'], name='Prophet Lower Bound', line=dict(dash='dash'))) | |
if use_arima: | |
# ARIMA forecast with automatic order selection | |
model_arima = auto_arima(df['y'], seasonal=False, trace=True) | |
results_arima = model_arima.fit(df['y']) | |
arima_forecast = results_arima.predict(n_periods=future_days) | |
future_dates_arima = pd.date_range(start=df['ds'].iloc[-1] + pd.Timedelta(days=1), periods=future_days) | |
fig_forecast.add_trace(go.Scatter(x=future_dates_arima, y=arima_forecast, name='ARIMA Forecast')) | |
fig_forecast.update_layout(title=f'Stock Price Forecast for {ticker}', xaxis_title='Date', yaxis_title='Stock Price') | |
# Create Plotly figure for Prophet components | |
fig_components = px.line(forecast, x='ds', y=['trend', 'yearly', 'weekly']) | |
fig_components.update_layout(title='Prophet Forecast Components') | |
return fig_forecast, fig_components | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=forecast_stock, | |
inputs=[ | |
gr.Dropdown(choices=['AAPL', 'GOOGL', 'MSFT', 'AMZN'], label="Stock Ticker"), | |
gr.Dropdown(choices=['1y', '2y', '5y', '10y', 'max'], label="Historical Data Period"), | |
gr.Slider(minimum=30, maximum=365, step=30, label="Days to Forecast"), | |
gr.Checkbox(label="Include ARIMA Forecast") | |
], | |
outputs=[ | |
gr.Plot(label="Forecast"), | |
gr.Plot(label="Prophet Forecast Components") | |
], | |
title="Stock Price Forecasting with Prophet and ARIMA", | |
description="Select a stock, historical data period, forecast horizon, and whether to include ARIMA forecast." | |
) | |
# Launch the interface | |
iface.launch() |