Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yfinance as yf
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from prophet import Prophet
|
5 |
+
import plotly.graph_objs as go
|
6 |
+
import plotly.express as px
|
7 |
+
import gradio as gr
|
8 |
+
from pmdarima import auto_arima
|
9 |
+
|
10 |
+
def forecast_stock(ticker, period, future_days, use_arima):
|
11 |
+
# Fetch data
|
12 |
+
data = yf.Ticker(ticker)
|
13 |
+
df = data.history(period=period)
|
14 |
+
|
15 |
+
if df.empty:
|
16 |
+
return "Could not retrieve data for the selected ticker."
|
17 |
+
|
18 |
+
df = df.reset_index()
|
19 |
+
df = df[['Date', 'Close']]
|
20 |
+
df.columns = ['ds', 'y']
|
21 |
+
df['ds'] = pd.to_datetime(df['ds']).dt.tz_localize(None)
|
22 |
+
df = df.dropna()
|
23 |
+
|
24 |
+
# Prophet forecast
|
25 |
+
model = Prophet()
|
26 |
+
model.fit(df)
|
27 |
+
future_dates = model.make_future_dataframe(periods=future_days)
|
28 |
+
forecast = model.predict(future_dates)
|
29 |
+
|
30 |
+
# Create Plotly figure for forecast
|
31 |
+
fig_forecast = go.Figure()
|
32 |
+
fig_forecast.add_trace(go.Scatter(x=df['ds'], y=df['y'], name='Historical'))
|
33 |
+
fig_forecast.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat'], name='Prophet Forecast'))
|
34 |
+
fig_forecast.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat_upper'], name='Prophet Upper Bound', line=dict(dash='dash')))
|
35 |
+
fig_forecast.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat_lower'], name='Prophet Lower Bound', line=dict(dash='dash')))
|
36 |
+
|
37 |
+
if use_arima:
|
38 |
+
# ARIMA forecast with automatic order selection
|
39 |
+
model_arima = auto_arima(df['y'], seasonal=False, trace=True)
|
40 |
+
results_arima = model_arima.fit(df['y'])
|
41 |
+
arima_forecast = results_arima.predict(n_periods=future_days)
|
42 |
+
future_dates_arima = pd.date_range(start=df['ds'].iloc[-1] + pd.Timedelta(days=1), periods=future_days)
|
43 |
+
|
44 |
+
fig_forecast.add_trace(go.Scatter(x=future_dates_arima, y=arima_forecast, name='ARIMA Forecast'))
|
45 |
+
|
46 |
+
fig_forecast.update_layout(title=f'Stock Price Forecast for {ticker}', xaxis_title='Date', yaxis_title='Stock Price')
|
47 |
+
|
48 |
+
# Create Plotly figure for Prophet components
|
49 |
+
fig_components = px.line(forecast, x='ds', y=['trend', 'yearly', 'weekly'])
|
50 |
+
fig_components.update_layout(title='Prophet Forecast Components')
|
51 |
+
|
52 |
+
return fig_forecast, fig_components
|
53 |
+
|
54 |
+
# Define Gradio interface
|
55 |
+
iface = gr.Interface(
|
56 |
+
fn=forecast_stock,
|
57 |
+
inputs=[
|
58 |
+
gr.Dropdown(choices=['AAPL', 'GOOGL', 'MSFT', 'AMZN'], label="Stock Ticker"),
|
59 |
+
gr.Dropdown(choices=['1y', '2y', '5y', '10y', 'max'], label="Historical Data Period"),
|
60 |
+
gr.Slider(minimum=30, maximum=365, step=30, label="Days to Forecast"),
|
61 |
+
gr.Checkbox(label="Include ARIMA Forecast")
|
62 |
+
],
|
63 |
+
outputs=[
|
64 |
+
gr.Plot(label="Forecast"),
|
65 |
+
gr.Plot(label="Prophet Forecast Components")
|
66 |
+
],
|
67 |
+
title="Stock Price Forecasting with Prophet and ARIMA",
|
68 |
+
description="Select a stock, historical data period, forecast horizon, and whether to include ARIMA forecast."
|
69 |
+
)
|
70 |
+
|
71 |
+
# Launch the interface
|
72 |
+
iface.launch()
|