File size: 12,323 Bytes
55cb877
fa10ae3
55cb877
 
a3b55b1
55cb877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa10ae3
 
 
9d8d8ff
55cb877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3b55b1
55cb877
a3b55b1
55cb877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3b55b1
55cb877
 
a3b55b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19621bd
a3b55b1
55cb877
a3b55b1
 
 
55cb877
a3b55b1
 
 
 
55cb877
a3b55b1
 
 
 
40af060
a3b55b1
 
 
 
 
 
 
 
 
 
40af060
a3b55b1
 
 
 
 
 
 
 
 
 
 
097f6ad
 
a3b55b1
 
 
097f6ad
a3b55b1
097f6ad
 
 
 
 
 
 
 
a3b55b1
097f6ad
a3b55b1
 
40af060
a3b55b1
 
 
 
efa7e97
a3b55b1
 
 
 
097f6ad
a3b55b1
 
 
097f6ad
a3b55b1
097f6ad
 
 
 
 
 
 
 
a3b55b1
097f6ad
a3b55b1
 
 
 
 
 
19621bd
82c70d8
a3b55b1
 
 
19621bd
a3b55b1
 
 
 
 
 
 
 
 
 
19621bd
a3b55b1
 
 
 
 
19621bd
 
 
 
 
 
 
 
a3b55b1
19621bd
a3b55b1
 
55cb877
a3b55b1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import gradio as gr
import os
from huggingface_hub import InferenceClient

# CSS to hide footer and customize button
css = """
footer {display:none !important}
.output-markdown{display:none !important}
.gr-button-primary {
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(17, 20, 45) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: none !important;
}
.gr-button-primary:hover {
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important;
    background: none rgb(66, 133, 244) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
    --tw-bg-opacity: 1 !important;
    background-color: rgb(229,225,255) !important;
}
.to-orange-200 {
    --tw-gradient-to: rgb(37 56 133 / 37%) !important;
}
.from-orange-400 {
    --tw-gradient-from: rgb(17, 20, 45) !important;
    --tw-gradient-to: rgb(255 150 51 / 0);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group-hover\:from-orange-500 {
    --tw-gradient-from:rgb(17, 20, 45) !important; 
    --tw-gradient-to: rgb(37 56 133 / 37%);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group:hover .group-hover\:text-orange-500 {
    --tw-text-opacity: 1 !important;
    color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
}
"""

# Initialize the InferenceClient for chatbot
client = InferenceClient(
    model="microsoft/phi-4",
    token=os.getenv("HF_TOKEN1")
)

# Define the function for chatbot response
def respond(
    message,
    history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

def send_message(message, history, system_message, max_tokens, temperature, top_p):
    if message:
        history.append((message, ""))
        response = respond(
            message=message,
            history=history,
            system_message=system_message,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
        )
        response_text = ""
        for r in response:
            response_text = r
        history[-1] = (message, response_text)
    return history, gr.update(value="")

# Description for the chatbot
description = """
Hello! I'm here to support you emotionally and answer any questions. How are you feeling today?
<div style='color: green;'>Developed by Hashir Ehtisham</div>
"""

# Motivational tagline for the new tab
motivational_tagline = """
Welcome to the Motivational Quotes tab! Let’s ignite your day with some inspiration. What do you need motivation for today?
<div style='color: green;'>Developed by Hashir Ehtisham</div>
"""

# Emotions Detector tagline for the new tab
emotions_detector_tagline = """
Know how your message sounds and how to improve the tone of the message with Emotions Detector.
<div style='color: green;'>Developed by Hashir Ehtisham</div>
"""

# Jokes tagline for the new tab
jokes_tagline = """
Ready for a good laugh? Ask me for a joke to lighten up your mood!
<div style='color: green;'>Developed by Hashir Ehtisham</div>
"""

# Define the Gradio Blocks interface
with gr.Blocks(css=css) as demo:
    with gr.Tab("Emotional Support Chatbot"):
        gr.Markdown("# Emotional Support Chatbot")
        gr.Markdown(description)
        
        system_message = gr.Textbox(value="You are a friendly Emotional Support Chatbot.", visible=False)
        chatbot = gr.Chatbot()
        msg = gr.Textbox(label="Your message")
        clear = gr.Button("Clear")
        
        with gr.Accordion("Additional Inputs", open=False):
            max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
            temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
            top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")

        def respond_wrapper(message, chat_history, system_message_val, max_tokens_val, temperature_val, top_p_val):
            chat_history, _ = send_message(
                message=message,
                history=chat_history,
                system_message=system_message_val,
                max_tokens=max_tokens_val,
                temperature=temperature_val,
                top_p=top_p_val,
            )
            return gr.update(value=""), chat_history

        msg.submit(respond_wrapper, [msg, chatbot, system_message, max_tokens, temperature, top_p], [msg, chatbot])
        clear.click(lambda: None, None, chatbot, queue=False)
    
    with gr.Tab("Motivational Quotes"):
        gr.Markdown("# Motivational Quotes")
        gr.Markdown(motivational_tagline)
        
        system_message_motivational = gr.Textbox(value="You are a friendly Motivational Quotes Chatbot.", visible=False)
        chatbot_motivational = gr.Chatbot()
        msg_motivational = gr.Textbox(label="Your message")
        clear_motivational = gr.Button("Clear")
        
        with gr.Accordion("Additional Inputs", open=False):
            max_tokens_motivational = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
            temperature_motivational = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
            top_p_motivational = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")

        def respond_wrapper_motivational(message, chat_history, system_message_val, max_tokens_val, temperature_val, top_p_val):
            chat_history, _ = send_message(
                message=message,
                history=chat_history,
                system_message=system_message_val,
                max_tokens=max_tokens_val,
                temperature=temperature_val,
                top_p=top_p_val,
            )
            return gr.update(value=""), chat_history

        msg_motivational.submit(respond_wrapper_motivational, [msg_motivational, chatbot_motivational, system_message_motivational, max_tokens_motivational, temperature_motivational, top_p_motivational], [msg_motivational, chatbot_motivational])
        clear_motivational.click(lambda: None, None, chatbot_motivational, queue=False)
    
    with gr.Tab("Emotions Detector"):
        gr.Markdown("# Emotions Detector")
        gr.Markdown(emotions_detector_tagline)
        
        system_message_emotions = gr.Textbox(value="You are an Emotion and Tone Detection Assistant whose sole purpose is to analyze any given text and identify its emotional tone (such as happy, sad, angry, neutral) and style. For every input, determine the tone and clearly state it, followed by a concise suggestion on how the wording could be improved or made more suitable for the intended audience or purpose. If the tone is casual, slang-heavy, or friendly, note that it works well in informal contexts and suggest how it could be adapted for professional communication. If the tone is neutral, state its appropriateness for the specific context it appears to be used in. Your role is not to chat or engage in conversation but to provide analytical feedback and improvement suggestions only.", visible=False)
        chatbot_emotions = gr.Chatbot()
        msg_emotions = gr.Textbox(label="Your message")
        clear_emotions = gr.Button("Clear")
        
        with gr.Accordion("Additional Inputs", open=False):
            max_tokens_emotions = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
            temperature_emotions = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
            top_p_emotions = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")

        def respond_wrapper_emotions(message, chat_history, system_message_val, max_tokens_val, temperature_val, top_p_val):
            chat_history, _ = send_message(
                message=message,
                history=chat_history,
                system_message=system_message_val,
                max_tokens=max_tokens_val,
                temperature=temperature_val,
                top_p=top_p_val,
            )
            return gr.update(value=""), chat_history

        msg_emotions.submit(respond_wrapper_emotions, [msg_emotions, chatbot_emotions, system_message_emotions, max_tokens_emotions, temperature_emotions, top_p_emotions], [msg_emotions, chatbot_emotions])
        clear_emotions.click(lambda: None, None, chatbot_emotions, queue=False)
    
    with gr.Tab("Jokes for You"):
        gr.Markdown("# Jokes for You")
        gr.Markdown(jokes_tagline)
        
        system_message_jokes = gr.Textbox(value="You are a Friendly Jokes Chatbot whose sole purpose is to provide jokes when asked. Always ensure each joke is unique, original, and not repeated within the same session. Keep track of previously told jokes and avoid reusing them. Rotate topics to maintain variety, ensuring jokes cover different themes such as everyday life, wordplay, puns, animals, professions, and more, rather than focusing repeatedly on a single subject. All jokes must be appropriate for all audiences, easy to understand, and engaging. Your role is to deliver humor only when prompted, without engaging in unrelated conversation.", visible=False)
        chatbot_jokes = gr.Chatbot()
        msg_jokes = gr.Textbox(label="Your message")
        clear_jokes = gr.Button("Clear")
        
        with gr.Accordion("Examples", open=False):
            gr.Examples(
                examples=[
                    ["Tell me a joke"],
                    ["Make me laugh"],
                    ["Say something funny"],
                ],
                inputs=msg_jokes,
            )

        with gr.Accordion("Additional Inputs", open=False):
            max_tokens_jokes = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
            temperature_jokes = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
            top_p_jokes = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")

        def respond_wrapper_jokes(message, chat_history, system_message_val, max_tokens_val, temperature_val, top_p_val):
            chat_history, _ = send_message(
                message=message,
                history=chat_history,
                system_message=system_message_val,
                max_tokens=max_tokens_val,
                temperature=temperature_val,
                top_p=top_p_val,
            )
            return gr.update(value=""), chat_history

        msg_jokes.submit(respond_wrapper_jokes, [msg_jokes, chatbot_jokes, system_message_jokes, max_tokens_jokes, temperature_jokes, top_p_jokes], [msg_jokes, chatbot_jokes])
        clear_jokes.click(lambda: None, None, chatbot_jokes, queue=False)

# Launch the Gradio interface
demo.launch()