Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Initialize the emotion classifier
|
6 |
+
classifier = pipeline("text-classification", model='bhadresh-savani/distilbert-base-uncased-emotion', return_all_scores=True)
|
7 |
+
|
8 |
+
# Define the function for emotion detection
|
9 |
+
def detect_emotions(emotion_input):
|
10 |
+
prediction = classifier(emotion_input)
|
11 |
+
output = {emotion["label"]: emotion["score"] for emotion in prediction[0]}
|
12 |
+
return output
|
13 |
+
|
14 |
+
# Examples for the emotion detector
|
15 |
+
examples = [["I am happy that I gifted my son a robot"], ["Sorry for being late"]]
|
16 |
+
|
17 |
+
# CSS to hide footer and customize button
|
18 |
+
css = """
|
19 |
+
footer {display:none !important}
|
20 |
+
.output-markdown{display:none !important}
|
21 |
+
|
22 |
+
.gr-button-primary {
|
23 |
+
z-index: 14;
|
24 |
+
height: 43px;
|
25 |
+
width: 130px;
|
26 |
+
left: 0px;
|
27 |
+
top: 0px;
|
28 |
+
padding: 0px;
|
29 |
+
cursor: pointer !important;
|
30 |
+
background: none rgb(17, 20, 45) !important;
|
31 |
+
border: none !important;
|
32 |
+
text-align: center !important;
|
33 |
+
font-family: Poppins !important;
|
34 |
+
font-size: 14px !important;
|
35 |
+
font-weight: 500 !important;
|
36 |
+
color: rgb(255, 255, 255) !important;
|
37 |
+
line-height: 1 !important;
|
38 |
+
border-radius: 12px !important;
|
39 |
+
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
40 |
+
box-shadow: none !important;
|
41 |
+
}
|
42 |
+
.gr-button-primary:hover {
|
43 |
+
z-index: 14;
|
44 |
+
height: 43px;
|
45 |
+
width: 130px;
|
46 |
+
left: 0px;
|
47 |
+
top: 0px;
|
48 |
+
padding: 0px;
|
49 |
+
cursor: pointer !important;
|
50 |
+
background: none rgb(66, 133, 244) !important;
|
51 |
+
border: none !important;
|
52 |
+
text-align: center !important;
|
53 |
+
font-family: Poppins !important;
|
54 |
+
font-size: 14px !important;
|
55 |
+
font-weight: 500 !important;
|
56 |
+
color: rgb(255, 255, 255) !important;
|
57 |
+
line-height: 1 !important;
|
58 |
+
border-radius: 12px !important;
|
59 |
+
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
60 |
+
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
|
61 |
+
}
|
62 |
+
.hover\:bg-orange-50:hover {
|
63 |
+
--tw-bg-opacity: 1 !important;
|
64 |
+
background-color: rgb(229,225,255) !important;
|
65 |
+
}
|
66 |
+
|
67 |
+
.to-orange-200 {
|
68 |
+
--tw-gradient-to: rgb(37 56 133 / 37%) !important;
|
69 |
+
}
|
70 |
+
|
71 |
+
.from-orange-400 {
|
72 |
+
--tw-gradient-from: rgb(17, 20, 45) !important;
|
73 |
+
--tw-gradient-to: rgb(255 150 51 / 0);
|
74 |
+
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
|
75 |
+
}
|
76 |
+
|
77 |
+
.group-hover\:from-orange-500 {
|
78 |
+
--tw-gradient-from:rgb(17, 20, 45) !important;
|
79 |
+
--tw-gradient-to: rgb(37 56 133 / 37%);
|
80 |
+
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
|
81 |
+
}
|
82 |
+
|
83 |
+
.group:hover .group-hover\:text-orange-500 {
|
84 |
+
--tw-text-opacity: 1 !important;
|
85 |
+
color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
|
86 |
+
}
|
87 |
+
"""
|
88 |
+
|
89 |
+
# Initialize the InferenceClient for chatbot
|
90 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
91 |
+
|
92 |
+
# Define the function for chatbot response
|
93 |
+
def respond(
|
94 |
+
message,
|
95 |
+
history,
|
96 |
+
system_message,
|
97 |
+
max_tokens,
|
98 |
+
temperature,
|
99 |
+
top_p,
|
100 |
+
):
|
101 |
+
messages = [{"role": "system", "content": system_message}]
|
102 |
+
|
103 |
+
for val in history:
|
104 |
+
if val[0]:
|
105 |
+
messages.append({"role": "user", "content": val[0]})
|
106 |
+
if val[1]:
|
107 |
+
messages.append({"role": "assistant", "content": val[1]})
|
108 |
+
|
109 |
+
messages.append({"role": "user", "content": message})
|
110 |
+
|
111 |
+
response = ""
|
112 |
+
|
113 |
+
for message in client.chat_completion(
|
114 |
+
messages,
|
115 |
+
max_tokens=max_tokens,
|
116 |
+
stream=True,
|
117 |
+
temperature=temperature,
|
118 |
+
top_p=top_p,
|
119 |
+
):
|
120 |
+
token = message.choices[0].delta.content
|
121 |
+
response += token
|
122 |
+
yield response
|
123 |
+
|
124 |
+
def send_message(message, history, system_message, max_tokens, temperature, top_p):
|
125 |
+
if message:
|
126 |
+
history.append((message, ""))
|
127 |
+
response = respond(
|
128 |
+
message=message,
|
129 |
+
history=history,
|
130 |
+
system_message=system_message,
|
131 |
+
max_tokens=max_tokens,
|
132 |
+
temperature=temperature,
|
133 |
+
top_p=top_p,
|
134 |
+
)
|
135 |
+
response_text = ""
|
136 |
+
for r in response:
|
137 |
+
response_text = r
|
138 |
+
history[-1] = (message, response_text)
|
139 |
+
return history, gr.update(value="")
|
140 |
+
|
141 |
+
# Description for the chatbot
|
142 |
+
description = """
|
143 |
+
Hello! I'm here to support you emotionally and answer any questions. How are you feeling today?
|
144 |
+
<div style='color: green;'>Developed by Hashir Ehtisham</div>
|
145 |
+
"""
|
146 |
+
|
147 |
+
# Define the Gradio Blocks interface
|
148 |
+
with gr.Blocks(css=css) as demo:
|
149 |
+
with gr.Tab("Emotional Support Chatbot"):
|
150 |
+
gr.Markdown("# Emotional Support Chatbot")
|
151 |
+
gr.Markdown(description)
|
152 |
+
|
153 |
+
system_message = gr.Textbox(value="You are a friendly Emotional Support Chatbot.", visible=False)
|
154 |
+
chatbot = gr.Chatbot()
|
155 |
+
msg = gr.Textbox(label="Your message")
|
156 |
+
clear = gr.Button("Clear")
|
157 |
+
|
158 |
+
with gr.Accordion("Additional Inputs", open=False):
|
159 |
+
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
160 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
161 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
162 |
+
|
163 |
+
def respond_wrapper(message, chat_history, system_message_val, max_tokens_val, temperature_val, top_p_val):
|
164 |
+
chat_history, _ = send_message(
|
165 |
+
message=message,
|
166 |
+
history=chat_history,
|
167 |
+
system_message=system_message_val,
|
168 |
+
max_tokens=max_tokens_val,
|
169 |
+
temperature=temperature_val,
|
170 |
+
top_p=top_p_val,
|
171 |
+
)
|
172 |
+
return gr.update(value=""), chat_history
|
173 |
+
|
174 |
+
msg.submit(respond_wrapper, [msg, chatbot, system_message, max_tokens, temperature, top_p], [msg, chatbot])
|
175 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
176 |
+
|
177 |
+
with gr.Tab("Emotions Detector"):
|
178 |
+
gr.Interface(
|
179 |
+
fn=detect_emotions,
|
180 |
+
inputs=gr.Textbox(placeholder="Enter text here", label="Input"),
|
181 |
+
outputs=gr.Label(label="Emotion"),
|
182 |
+
title="Emotion Detector ",
|
183 |
+
examples=examples
|
184 |
+
)
|
185 |
+
|
186 |
+
if __name__ == "__main__":
|
187 |
+
demo.launch()
|