File size: 4,702 Bytes
6aea303
 
9be27a9
322634a
9be27a9
 
 
 
 
 
 
 
6aea303
 
9be27a9
 
 
 
b867d63
9be27a9
b867d63
9be27a9
b867d63
9be27a9
6aea303
9be27a9
 
6aea303
ec09bcb
 
9be27a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322634a
 
9be27a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b521c6
 
b867d63
9be27a9
 
 
b867d63
9be27a9
 
 
 
 
 
 
 
 
dc060e7
9be27a9
 
 
 
 
 
 
 
 
 
 
 
 
 
38d9c0f
9be27a9
 
dc060e7
9be27a9
 
 
 
 
 
 
 
 
 
 
8b521c6
9be27a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import subprocess
import sys
import shlex
import spaces
import torch
import uuid
import os
import json
from pathlib import Path
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread


# install packages for mamba
def install_mamba():
    subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
    subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))

install_mamba()

MODEL = "hanzla/Falcon3-Mamba-R1-v0"

TITLE = "<h1><center>Falcon3-Mamba-R1-v0 playground</center></h1>"

SUB_TITLE = """<center>Falcon3 Mamba R1 is a Selective State Space model (Mamba) that scales on test time compute for reasoning.</center>"""
SYSTEM_PROMPT = os.getenv('SYSTEM_PROMPT')

print(SYSTEM_PROMPT)

END_MESSAGE = """
\n
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
"""

device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
).to(device)

if device == "cuda":
    model = torch.compile(model)

@spaces.GPU
def stream_chat(
    message: str, 
    history: list, 
    temperature: float = 0.3, 
    max_new_tokens: int = 100, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2,
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = []
    for prompt, answer in history:
        conversation.extend([
            {"role": 'system', "content": SYSTEM_PROMPT },
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})

    print(message)
    
    input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=inputs, 
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        streamer=streamer,
        pad_token_id=11,
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("\nUser", "")
        buffer = buffer.replace("\nSystem", "")
        yield buffer

    print(f'response: {buffer}')
            
with gr.Blocks(theme="JohnSmith9982/small_and_pretty") as demo:
    gr.HTML(TITLE)
    gr.HTML(SUB_TITLE)
    
    chat_interface = gr.ChatInterface(
        fn=stream_chat,
        chatbot=gr.Chatbot(
            height=600,
            container=True,
            elem_classes=["chat-container"]
        ),
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=32768, step=1, value=4096, label="Max new tokens", render=False),
            gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
            gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False),
            gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False),
        ],
        examples=[
            ["""Consider the following statements:

1. If it rains, then the ground will be wet.
2. It is raining.

Using propositional logic, determine whether the conclusion "The ground is wet" is valid.  
Also, identify the rule of inference used to reach the conclusion.
"""],
            ["""A satellite is in a circular orbit around Earth at an altitude of 500 km above the surface. Calculate:

1. The orbital velocity of the satellite.  
2. The orbital period of the satellite.

Given:
- Radius of Earth, R_E = 6.37 × 10^6 m  
- Gravitational constant, G = 6.674 × 10^−11 Nm²/kg²  
- Mass of Earth, M_E = 5.97 × 10^24 kg"""],
        ],
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()