Spaces:
Sleeping
Sleeping
File size: 4,702 Bytes
6aea303 9be27a9 322634a 9be27a9 6aea303 9be27a9 b867d63 9be27a9 b867d63 9be27a9 b867d63 9be27a9 6aea303 9be27a9 6aea303 ec09bcb 9be27a9 322634a 9be27a9 8b521c6 b867d63 9be27a9 b867d63 9be27a9 dc060e7 9be27a9 38d9c0f 9be27a9 dc060e7 9be27a9 8b521c6 9be27a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import subprocess
import sys
import shlex
import spaces
import torch
import uuid
import os
import json
from pathlib import Path
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# install packages for mamba
def install_mamba():
subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
install_mamba()
MODEL = "hanzla/Falcon3-Mamba-R1-v0"
TITLE = "<h1><center>Falcon3-Mamba-R1-v0 playground</center></h1>"
SUB_TITLE = """<center>Falcon3 Mamba R1 is a Selective State Space model (Mamba) that scales on test time compute for reasoning.</center>"""
SYSTEM_PROMPT = os.getenv('SYSTEM_PROMPT')
print(SYSTEM_PROMPT)
END_MESSAGE = """
\n
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
).to(device)
if device == "cuda":
model = torch.compile(model)
@spaces.GPU
def stream_chat(
message: str,
history: list,
temperature: float = 0.3,
max_new_tokens: int = 100,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
conversation.extend([
{"role": 'system', "content": SYSTEM_PROMPT },
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
print(message)
input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
streamer=streamer,
pad_token_id=11,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("\nUser", "")
buffer = buffer.replace("\nSystem", "")
yield buffer
print(f'response: {buffer}')
with gr.Blocks(theme="JohnSmith9982/small_and_pretty") as demo:
gr.HTML(TITLE)
gr.HTML(SUB_TITLE)
chat_interface = gr.ChatInterface(
fn=stream_chat,
chatbot=gr.Chatbot(
height=600,
container=True,
elem_classes=["chat-container"]
),
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature", render=False),
gr.Slider(minimum=128, maximum=32768, step=1, value=4096, label="Max new tokens", render=False),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False),
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False),
],
examples=[
["""Consider the following statements:
1. If it rains, then the ground will be wet.
2. It is raining.
Using propositional logic, determine whether the conclusion "The ground is wet" is valid.
Also, identify the rule of inference used to reach the conclusion.
"""],
["""A satellite is in a circular orbit around Earth at an altitude of 500 km above the surface. Calculate:
1. The orbital velocity of the satellite.
2. The orbital period of the satellite.
Given:
- Radius of Earth, R_E = 6.37 × 10^6 m
- Gravitational constant, G = 6.674 × 10^−11 Nm²/kg²
- Mass of Earth, M_E = 5.97 × 10^24 kg"""],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |