Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,166 @@
|
|
1 |
-
import gradio as gr
|
2 |
import subprocess
|
3 |
import sys
|
4 |
-
import
|
5 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Install the necessary packages that require CUDA
|
8 |
-
try:
|
9 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "causal-conv1d>=1.4.0", "--no-build-isolation"])
|
10 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "mamba-ssm"])
|
11 |
-
except Exception as e:
|
12 |
-
print(f"Warning: Could not install CUDA extensions: {e}")
|
13 |
-
print("The model might not work correctly or will be slower.")
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
|
20 |
-
repo_name = "hanzla/Falcon3-Mamba-R1-v0"
|
21 |
|
22 |
-
|
23 |
-
print("Loading tokenizer...")
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained(repo_name)
|
25 |
|
26 |
-
|
27 |
-
print("Loading model... (this may take some time)")
|
28 |
-
model = None
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
model = AutoModelForCausalLM.from_pretrained(
|
33 |
-
repo_name,
|
34 |
-
device_map="auto",
|
35 |
-
torch_dtype=torch.bfloat16,
|
36 |
-
)
|
37 |
-
except Exception as e:
|
38 |
-
print(f"Error loading model with GPU: {e}")
|
39 |
-
print("Attempting to load with CPU only...")
|
40 |
-
try:
|
41 |
-
model = AutoModelForCausalLM.from_pretrained(
|
42 |
-
repo_name,
|
43 |
-
device_map="cpu",
|
44 |
-
torch_dtype=torch.float32,
|
45 |
-
)
|
46 |
-
except Exception as e2:
|
47 |
-
print(f"Error loading model with CPU: {e2}")
|
48 |
-
|
49 |
-
if model is None:
|
50 |
-
print("Could not load the model. Please check the logs.")
|
51 |
-
else:
|
52 |
-
print("Model loaded successfully!")
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
@spaces.GPU
|
56 |
-
def
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import subprocess
|
2 |
import sys
|
3 |
+
import shlex
|
4 |
import spaces
|
5 |
+
import torch
|
6 |
+
import uuid
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
from pathlib import Path
|
10 |
+
import gradio as gr
|
11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
12 |
+
from threading import Thread
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# install packages for mamba
|
16 |
+
def install_mamba():
|
17 |
+
subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
|
18 |
+
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
|
19 |
|
20 |
+
install_mamba()
|
|
|
21 |
|
22 |
+
MODEL = "hanzla/Falcon3-Mamba-R1-v0"
|
|
|
|
|
23 |
|
24 |
+
TITLE = "<h1><center>Falcon3-Mamba-R1-v0 playground</center></h1>"
|
|
|
|
|
25 |
|
26 |
+
SUB_TITLE = """<center>Falcon3 Mamba R1 is a Selective State Space model (Mamba) that scales on test time compute for reasoning.</center>"""
|
27 |
+
SYSTEM_PROMPT = os.getenv('SYSTEM_PROMPT')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
CSS = """
|
30 |
+
.duplicate-button {
|
31 |
+
margin: auto !important;
|
32 |
+
color: white !important;
|
33 |
+
background: black !important;
|
34 |
+
border-radius: 100vh !important;
|
35 |
+
}
|
36 |
+
h3 {
|
37 |
+
text-align: center;
|
38 |
+
/* Fix for chat container */
|
39 |
+
.chat-container {
|
40 |
+
height: 600px !important;
|
41 |
+
overflow-y: auto !important;
|
42 |
+
flex-direction: column !important;
|
43 |
+
}
|
44 |
+
.messages-container {
|
45 |
+
flex-grow: 1 !important;
|
46 |
+
overflow-y: auto !important;
|
47 |
+
padding-right: 10px !important;
|
48 |
+
}
|
49 |
+
/* Ensure consistent height */
|
50 |
+
.contain {
|
51 |
+
height: 100% !important;
|
52 |
+
}
|
53 |
+
"""
|
54 |
+
|
55 |
+
END_MESSAGE = """
|
56 |
+
\n
|
57 |
+
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
|
58 |
+
"""
|
59 |
+
|
60 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
61 |
+
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
63 |
+
model = AutoModelForCausalLM.from_pretrained(
|
64 |
+
MODEL,
|
65 |
+
torch_dtype=torch.bfloat16,
|
66 |
+
).to(device)
|
67 |
+
|
68 |
+
if device == "cuda":
|
69 |
+
model = torch.compile(model)
|
70 |
|
71 |
@spaces.GPU
|
72 |
+
def stream_chat(
|
73 |
+
message: str,
|
74 |
+
history: list,
|
75 |
+
temperature: float = 0.3,
|
76 |
+
max_new_tokens: int = 100,
|
77 |
+
top_p: float = 1.0,
|
78 |
+
top_k: int = 20,
|
79 |
+
penalty: float = 1.2,
|
80 |
+
):
|
81 |
+
print(f'message: {message}')
|
82 |
+
print(f'history: {history}')
|
83 |
+
|
84 |
+
conversation = []
|
85 |
+
for prompt, answer in history:
|
86 |
+
conversation.extend([
|
87 |
+
{"role": 'system', "content": SYSTEM_PROMPT },
|
88 |
+
{"role": "user", "content": prompt},
|
89 |
+
{"role": "assistant", "content": answer},
|
90 |
+
])
|
91 |
+
|
92 |
+
conversation.append({"role": "user", "content": message})
|
93 |
|
94 |
+
input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
95 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
96 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True)
|
97 |
|
98 |
+
generate_kwargs = dict(
|
99 |
+
input_ids=inputs,
|
100 |
+
max_new_tokens=max_new_tokens,
|
101 |
+
do_sample=False if temperature == 0 else True,
|
102 |
+
top_p=top_p,
|
103 |
+
top_k=top_k,
|
104 |
+
temperature=temperature,
|
105 |
+
streamer=streamer,
|
106 |
+
pad_token_id=11,
|
107 |
)
|
108 |
+
|
109 |
+
with torch.no_grad():
|
110 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
111 |
+
thread.start()
|
112 |
+
|
113 |
+
buffer = ""
|
114 |
+
for new_text in streamer:
|
115 |
+
buffer += new_text
|
116 |
+
buffer = buffer.replace("\nUser", "")
|
117 |
+
buffer = buffer.replace("\nSystem", "")
|
118 |
+
yield buffer
|
119 |
+
|
120 |
+
print(f'response: {buffer}')
|
121 |
+
|
122 |
+
with gr.Blocks(css=CSS, theme="soft") as demo:
|
123 |
+
gr.HTML(TITLE)
|
124 |
+
gr.HTML(SUB_TITLE)
|
125 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
126 |
|
127 |
+
chat_interface = gr.ChatInterface(
|
128 |
+
fn=stream_chat,
|
129 |
+
chatbot=gr.Chatbot(
|
130 |
+
height=600,
|
131 |
+
container=True,
|
132 |
+
elem_classes=["chat-container"]
|
133 |
+
),
|
134 |
+
fill_height=True,
|
135 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
136 |
+
additional_inputs=[
|
137 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature", render=False),
|
138 |
+
gr.Slider(minimum=128, maximum=32768, step=1, value=1024, label="Max new tokens", render=False),
|
139 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
|
140 |
+
gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False),
|
141 |
+
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False),
|
142 |
+
],
|
143 |
+
examples=[
|
144 |
+
["""Consider the following statements:
|
145 |
+
|
146 |
+
1. If it rains, then the ground will be wet.
|
147 |
+
2. It is raining.
|
148 |
+
|
149 |
+
Using propositional logic, determine whether the conclusion "The ground is wet" is valid.
|
150 |
+
Also, identify the rule of inference used to reach the conclusion.
|
151 |
+
"""],
|
152 |
+
["""A satellite is in a circular orbit around Earth at an altitude of 500 km above the surface. Calculate:
|
153 |
+
|
154 |
+
1. The orbital velocity of the satellite.
|
155 |
+
2. The orbital period of the satellite.
|
156 |
+
|
157 |
+
Given:
|
158 |
+
- Radius of Earth, R_E = 6.37 × 10^6 m
|
159 |
+
- Gravitational constant, G = 6.674 × 10^−11 Nm²/kg²
|
160 |
+
- Mass of Earth, M_E = 5.97 × 10^24 kg"""],
|
161 |
+
],
|
162 |
+
cache_examples=False,
|
163 |
+
)
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
demo.launch()
|