File size: 7,471 Bytes
53431b4 0e89322 53431b4 0e89322 53431b4 0e89322 53431b4 0e89322 53431b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
"""## Import necessary libraries"""
import os
import shutil
import json
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
from langchain.document_loaders import YoutubeLoader
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
#from google.colab import drive
from google.oauth2 import service_account
from google.cloud import translate_v2 as translate
import gradio as gr
"""## Access KEY"""
#ACCESS_KEY = os.environ.get("ACCESS_KEY")
service_account_info = json.loads(os.environ.get("SERVICE_ACCOUNT_FILE"))
credentials = service_account.Credentials.from_service_account_info(service_account_info)
""" ## Load PDF """
class LoadPdf:
def __init__(self, pdf_file):
if not self.is_pdf_file(pdf_file):
raise gr.Error("Invalid file extension. Please load a PDF file")
self.pdf_file = pdf_file
def is_pdf_file(self, file_path):
_, file_extension = os.path.splitext(file_path)
return file_extension.lower() == ".pdf"
def read_file(self):
loader = PyPDFLoader(self.pdf_file)
data = loader.load()
return data
"""## Request OpenAI"""
class QuestionAnswer:
def __init__(self, data, question, user_key):
self.data = data
self.question = question
self.key = user_key
def make_qa(self):
#Splitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
splits = text_splitter.split_documents(self.data)
#Persist dir
persist_directory = 'files/chroma/'
#EMbedings
embedding = OpenAIEmbeddings(openai_api_key=self.key)
retriever = Chroma.from_documents(documents=splits,
embedding=embedding,
persist_directory=persist_directory).as_retriever()
# initialize the LLM
llm = ChatOpenAI(temperature=0.2, model="gpt-3.5-turbo-16k", openai_api_key=self.key)
question_answer = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
make_question = f'{self.question}'
return question_answer.run(make_question)
"""## Translation"""
class TranslateOutput:
def __init__(self, credentials):
self.credentials = credentials
def list_languages(self):
client = translate.client.Client(credentials=self.credentials)
languages = client.get_languages()
language_names = [language['name'] for language in languages]
return language_names
def all_languages(self):
client = translate.client.Client(credentials=self.credentials)
languages = client.get_languages()
return languages
def translate_text(self, text, target_language):
client = translate.client.Client(target_language=target_language, credentials=self.credentials)
if isinstance(text, bytes):
text = text.decode("utf-8")
result = client.translate(text, target_language=target_language)
return result["translatedText"]
"""## Run QA """
def run_qa(files,checkboxes,question,language,user_key):
#secret_key = os.environ.get("SECRET_KEY")
if user_key is None:
return 'Introduza OpenAI API KEY'
full_filenames = [file.name for file in files]
available_files = [os.path.basename(path) for path in full_filenames]
chosen_files = checkboxes
# Filter files that are both available and chosen
loadable_files = [file for file in available_files if file in chosen_files]
# debug messages
print(f"=> Available Files: {str(available_files)}")
print(f"=> Chosen Files: {str(chosen_files)}")
print(f"=> Question for Files: {str(question)}")
print(f"=> Language to use: {str(language)}")
# clear data
data=''
# Load files
for file in loadable_files:
print(f"=> Loading chosen file: {str(file)}")
pdf_loader = LoadPdf("pdfs/"+file)
data = pdf_loader.read_file()
# Run the model
qa = QuestionAnswer(data, question, user_key)
answer_open_ai = qa.make_qa()
# Translate output
language_selected = language
translate_output = TranslateOutput(credentials)
for i in translate_output.all_languages():
if i['name'] == language_selected:
iso_code = i['language']
break
print(f"=> Answer OpenAI: {answer_open_ai}")
print(f"=> Target Language IsoCode: {iso_code}")
answer = translate_output.translate_text(answer_open_ai, target_language=iso_code)
print(f"=> Translated Answer OpenAI: {answer}")
return answer
# Define a function to be called when files are uploaded
def on_files_upload(files):
# save files to files dir
if not os.path.exists("pdfs"):
os.makedirs("pdfs", exist_ok=True)
# print(f"The directory 'pdfs' was created!");
files_dir = "pdfs"
for fileobj in files:
path = files_dir + "/" + os.path.basename(fileobj)
shutil.copyfile(fileobj.name, path)
# checkbox group update
full_filenames = [file.name for file in files]
filenames = [os.path.basename(path) for path in full_filenames]
return(gr.CheckboxGroup(choices=filenames))
# Define a function to be called when files are cleared
def on_files_cleared():
if os.path.exists("pdfs"):
shutil.rmtree("pdfs")
# print(f"The directory was removed!");
return(gr.CheckboxGroup(choices=[]))
# Define the Gradio interface
title = "Question/Answer over Documents"
subtitle = "OpenAI GPT 3.5 Turbo LLM assisted Question/Answer over multiple PDF context documents"
authors = "Hugo Cavalaria "
custom_layout = "<h1>{}</h1><h2>{}</h2><p>{}</p>".format(title,subtitle,authors)
# Get the list of languages available
translate_output = TranslateOutput(credentials)
language_names = [i for i in translate_output.list_languages()]
# Gradio Interface
with gr.Blocks() as interface:
with gr.Row():
with gr.Column(scale=2):
gr.HTML(custom_layout)
with gr.Row():
with gr.Column(scale=1):
upload_pdfs = gr.Files(label="Upload multiple PDF files.", interactive=True, file_types=['.pdf'], container=True)
checkbox_group = gr.CheckboxGroup(label="Select the files to question.", choices=[], interactive=True)
question_text = gr.Textbox(label="Question:")
answer_language = gr.Dropdown(label="Answer translation to:", choices=language_names, value="Portuguese")
secret_key = gr.Textbox(label="OpenAI API Key:")
with gr.Column(scale=1):
output_status = gr.Textbox(label="Answer:")
btn = gr.Button("Ask")
btn.click(fn=run_qa,
inputs=[upload_pdfs,checkbox_group,question_text,answer_language,secret_key],
outputs=[output_status])
upload_pdfs.upload(fn=on_files_upload,
inputs=[upload_pdfs],
outputs=[checkbox_group],
show_progress="full")
upload_pdfs.clear(fn=on_files_cleared,
inputs=None,
outputs=[checkbox_group])
"""## Launch Interface"""
# launch interface
if __name__ == "__main__":
interface.launch(share=False, debug=True) |