File size: 7,471 Bytes
53431b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e89322
 
 
53431b4
 
 
 
 
 
 
 
 
 
 
 
 
 
0e89322
 
 
 
53431b4
 
0e89322
53431b4
0e89322
53431b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""## Import necessary libraries"""
import os
import shutil
import json
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
from langchain.document_loaders import YoutubeLoader
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
#from google.colab import drive
from google.oauth2 import service_account
from google.cloud import translate_v2 as translate
import gradio as gr

"""## Access KEY"""
#ACCESS_KEY = os.environ.get("ACCESS_KEY")
service_account_info = json.loads(os.environ.get("SERVICE_ACCOUNT_FILE"))
credentials = service_account.Credentials.from_service_account_info(service_account_info)

""" ## Load PDF """
class LoadPdf:

  def __init__(self, pdf_file):
    if not self.is_pdf_file(pdf_file):
      raise gr.Error("Invalid file extension. Please load a PDF file")
    self.pdf_file = pdf_file

  def is_pdf_file(self, file_path):
    _, file_extension = os.path.splitext(file_path)
    return file_extension.lower() == ".pdf"

  def read_file(self):
    loader = PyPDFLoader(self.pdf_file)
    data = loader.load()
    return data

"""## Request OpenAI"""
class QuestionAnswer:

  def __init__(self, data, question, user_key):
    self.data = data
    self.question = question
    self.key = user_key

  def make_qa(self):    
    #Splitter
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    splits = text_splitter.split_documents(self.data)
    #Persist dir
    persist_directory = 'files/chroma/'
    #EMbedings
    embedding = OpenAIEmbeddings(openai_api_key=self.key)
    retriever = Chroma.from_documents(documents=splits,
                                      embedding=embedding,
                                      persist_directory=persist_directory).as_retriever()

    # initialize the LLM
    llm = ChatOpenAI(temperature=0.2, model="gpt-3.5-turbo-16k", openai_api_key=self.key)
    question_answer = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)

    make_question = f'{self.question}'

    return question_answer.run(make_question)

"""## Translation"""
class TranslateOutput:

  def __init__(self, credentials):
    self.credentials = credentials

  def list_languages(self):
    client = translate.client.Client(credentials=self.credentials)
    languages = client.get_languages()
    language_names = [language['name'] for language in languages]
    return language_names

  def all_languages(self):
    client = translate.client.Client(credentials=self.credentials)
    languages = client.get_languages()
    return languages

  def translate_text(self, text, target_language):
    client = translate.client.Client(target_language=target_language, credentials=self.credentials)

    if isinstance(text, bytes):
      text = text.decode("utf-8")

    result = client.translate(text, target_language=target_language)
    return result["translatedText"]

"""## Run QA """
def run_qa(files,checkboxes,question,language,user_key):

  #secret_key = os.environ.get("SECRET_KEY")
  if user_key is None:
    return 'Introduza OpenAI API KEY'

  full_filenames = [file.name for file in files]
  available_files = [os.path.basename(path) for path in full_filenames]
  chosen_files = checkboxes
    
  # Filter files that are both available and chosen
  loadable_files = [file for file in available_files if file in chosen_files]

  # debug messages
  print(f"=> Available Files: {str(available_files)}")
  print(f"=> Chosen Files: {str(chosen_files)}")
  print(f"=> Question for Files: {str(question)}")
  print(f"=> Language to use: {str(language)}")

  # clear data
  data=''
  # Load files
  for file in loadable_files:
    print(f"=> Loading chosen file: {str(file)}")
    pdf_loader = LoadPdf("pdfs/"+file)
    data = pdf_loader.read_file()

  # Run the model
  qa = QuestionAnswer(data, question, user_key)
  answer_open_ai = qa.make_qa()

  # Translate output
  language_selected = language
  translate_output = TranslateOutput(credentials)

  for i in translate_output.all_languages():
    if i['name'] == language_selected:
      iso_code = i['language']
      break

  print(f"=> Answer OpenAI: {answer_open_ai}")
  print(f"=> Target Language IsoCode: {iso_code}")

  answer = translate_output.translate_text(answer_open_ai, target_language=iso_code)
  print(f"=> Translated Answer OpenAI: {answer}")

  return answer

# Define a function to be called when files are uploaded
def on_files_upload(files):
    # save files to files dir
    if not os.path.exists("pdfs"):
      os.makedirs("pdfs", exist_ok=True)
      # print(f"The directory 'pdfs' was created!");
    files_dir = "pdfs"
    for fileobj in files:
      path =  files_dir + "/" + os.path.basename(fileobj)
      shutil.copyfile(fileobj.name, path)
    # checkbox group update
    full_filenames = [file.name for file in files]
    filenames = [os.path.basename(path) for path in full_filenames]
    return(gr.CheckboxGroup(choices=filenames))

# Define a function to be called when files are cleared
def on_files_cleared():
    if os.path.exists("pdfs"):
      shutil.rmtree("pdfs")
      # print(f"The directory was removed!");
    return(gr.CheckboxGroup(choices=[]))

# Define the Gradio interface
title = "Question/Answer over Documents"
subtitle = "OpenAI GPT 3.5 Turbo LLM assisted Question/Answer over multiple PDF context documents"
authors = "Hugo Cavalaria "
custom_layout = "<h1>{}</h1><h2>{}</h2><p>{}</p>".format(title,subtitle,authors)

# Get the list of languages available
translate_output = TranslateOutput(credentials)
language_names = [i for i in translate_output.list_languages()]

# Gradio Interface
with gr.Blocks() as interface:
    with gr.Row():
      with gr.Column(scale=2):
        gr.HTML(custom_layout)

    with gr.Row():
      with gr.Column(scale=1):
        upload_pdfs = gr.Files(label="Upload multiple PDF files.", interactive=True, file_types=['.pdf'], container=True)
        checkbox_group = gr.CheckboxGroup(label="Select the files to question.", choices=[], interactive=True)
        question_text = gr.Textbox(label="Question:")
        answer_language = gr.Dropdown(label="Answer translation to:", choices=language_names, value="Portuguese")
        secret_key = gr.Textbox(label="OpenAI API Key:")
      with gr.Column(scale=1):
        output_status = gr.Textbox(label="Answer:")

    btn = gr.Button("Ask")

    btn.click(fn=run_qa,
              inputs=[upload_pdfs,checkbox_group,question_text,answer_language,secret_key],
              outputs=[output_status])

    upload_pdfs.upload(fn=on_files_upload,
                       inputs=[upload_pdfs],
                       outputs=[checkbox_group],
                       show_progress="full")

    upload_pdfs.clear(fn=on_files_cleared,
                      inputs=None,
                      outputs=[checkbox_group])

"""## Launch Interface"""
# launch interface
if __name__ == "__main__":
  interface.launch(share=False, debug=True)