create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""## Import necessary libraries"""
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import json
|
5 |
+
from langchain.document_loaders import PyPDFLoader
|
6 |
+
from langchain.document_loaders import PyPDFDirectoryLoader
|
7 |
+
from langchain.llms import OpenAI
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from langchain.chains import LLMChain
|
10 |
+
from langchain.output_parsers import PydanticOutputParser
|
11 |
+
from pydantic import BaseModel, Field
|
12 |
+
from langchain.document_loaders import YoutubeLoader
|
13 |
+
from langchain.document_loaders import WebBaseLoader
|
14 |
+
from langchain.text_splitter import CharacterTextSplitter
|
15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
17 |
+
from langchain.vectorstores import Chroma
|
18 |
+
from langchain.chat_models import ChatOpenAI
|
19 |
+
from langchain.chains import RetrievalQA
|
20 |
+
#from google.colab import drive
|
21 |
+
from google.oauth2 import service_account
|
22 |
+
from google.cloud import translate_v2 as translate
|
23 |
+
import gradio as gr
|
24 |
+
|
25 |
+
"""## Access KEY"""
|
26 |
+
#ACCESS_KEY = os.environ.get("ACCESS_KEY")
|
27 |
+
service_account_info = json.loads(os.environ.get("SERVICE_ACCOUNT_FILE"))
|
28 |
+
credentials = service_account.Credentials.from_service_account_info(service_account_info)
|
29 |
+
|
30 |
+
""" ## Load PDF """
|
31 |
+
class LoadPdf:
|
32 |
+
|
33 |
+
def __init__(self, pdf_file):
|
34 |
+
if not self.is_pdf_file(pdf_file):
|
35 |
+
raise gr.Error("Invalid file extension. Please load a PDF file")
|
36 |
+
self.pdf_file = pdf_file
|
37 |
+
|
38 |
+
def is_pdf_file(self, file_path):
|
39 |
+
_, file_extension = os.path.splitext(file_path)
|
40 |
+
return file_extension.lower() == ".pdf"
|
41 |
+
|
42 |
+
def read_file(self):
|
43 |
+
loader = PyPDFLoader(self.pdf_file)
|
44 |
+
data = loader.load()
|
45 |
+
return data
|
46 |
+
|
47 |
+
"""## Request OpenAI"""
|
48 |
+
class QuestionAnswer:
|
49 |
+
|
50 |
+
def __init__(self, data, question, user_key):
|
51 |
+
self.data = data
|
52 |
+
self.question = question
|
53 |
+
self.key = user_key
|
54 |
+
|
55 |
+
def make_qa(self):
|
56 |
+
#Splitter
|
57 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
58 |
+
splits = text_splitter.split_documents(self.data)
|
59 |
+
#Persist dir
|
60 |
+
persist_directory = 'files/chroma/'
|
61 |
+
#EMbedings
|
62 |
+
embedding = OpenAIEmbeddings(openai_api_key=self.key)
|
63 |
+
retriever = Chroma.from_documents(documents=splits,
|
64 |
+
embedding=embedding,
|
65 |
+
persist_directory=persist_directory).as_retriever()
|
66 |
+
|
67 |
+
# initialize the LLM
|
68 |
+
llm = ChatOpenAI(temperature=0.2, model="gpt-3.5-turbo-16k", openai_api_key=self.key)
|
69 |
+
question_answer = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
70 |
+
|
71 |
+
make_question = f'{self.question}'
|
72 |
+
|
73 |
+
return question_answer.run(make_question)
|
74 |
+
|
75 |
+
"""## Translation"""
|
76 |
+
class TranslateOutput:
|
77 |
+
|
78 |
+
def __init__(self, credentials):
|
79 |
+
self.credentials = credentials
|
80 |
+
|
81 |
+
def list_languages(self):
|
82 |
+
client = translate.client.Client(credentials=self.credentials)
|
83 |
+
languages = client.get_languages()
|
84 |
+
language_names = [language['name'] for language in languages]
|
85 |
+
return language_names
|
86 |
+
|
87 |
+
def all_languages(self):
|
88 |
+
client = translate.client.Client(credentials=self.credentials)
|
89 |
+
languages = client.get_languages()
|
90 |
+
return languages
|
91 |
+
|
92 |
+
def translate_text(self, text, target_language):
|
93 |
+
client = translate.client.Client(target_language=target_language, credentials=self.credentials)
|
94 |
+
|
95 |
+
if isinstance(text, bytes):
|
96 |
+
text = text.decode("utf-8")
|
97 |
+
|
98 |
+
result = client.translate(text, target_language=target_language)
|
99 |
+
return result["translatedText"]
|
100 |
+
|
101 |
+
"""## Run QA """
|
102 |
+
def run_qa(files,checkboxes,question,language,user_key):
|
103 |
+
|
104 |
+
#secret_key = os.environ.get("SECRET_KEY")
|
105 |
+
if user_key is None:
|
106 |
+
return 'Introduza OpenAI API KEY'
|
107 |
+
|
108 |
+
full_filenames = [file.name for file in files]
|
109 |
+
available_files = [os.path.basename(path) for path in full_filenames]
|
110 |
+
chosen_files = checkboxes
|
111 |
+
|
112 |
+
# Filter files that are both available and chosen
|
113 |
+
loadable_files = [file for file in available_files if file in chosen_files]
|
114 |
+
|
115 |
+
# debug messages
|
116 |
+
print(f"=> Available Files: {str(available_files)}")
|
117 |
+
print(f"=> Chosen Files: {str(chosen_files)}")
|
118 |
+
print(f"=> Question for Files: {str(question)}")
|
119 |
+
print(f"=> Language to use: {str(language)}")
|
120 |
+
|
121 |
+
# clear data
|
122 |
+
data=''
|
123 |
+
# Load files
|
124 |
+
for file in loadable_files:
|
125 |
+
print(f"=> Loading chosen file: {str(file)}")
|
126 |
+
pdf_loader = LoadPdf("pdfs/"+file)
|
127 |
+
data = pdf_loader.read_file()
|
128 |
+
|
129 |
+
# Run the model
|
130 |
+
qa = QuestionAnswer(data, question, user_key)
|
131 |
+
answer_open_ai = qa.make_qa()
|
132 |
+
|
133 |
+
# Translate output
|
134 |
+
language_selected = language
|
135 |
+
translate_output = TranslateOutput(credentials)
|
136 |
+
|
137 |
+
for i in translate_output.all_languages():
|
138 |
+
if i['name'] == language_selected:
|
139 |
+
iso_code = i['language']
|
140 |
+
break
|
141 |
+
|
142 |
+
print(f"=> Answer OpenAI: {answer_open_ai}")
|
143 |
+
print(f"=> Target Language IsoCode: {iso_code}")
|
144 |
+
|
145 |
+
answer = translate_output.translate_text(answer_open_ai, target_language=iso_code)
|
146 |
+
print(f"=> Translated Answer OpenAI: {answer}")
|
147 |
+
|
148 |
+
return answer
|
149 |
+
|
150 |
+
# Define a function to be called when files are uploaded
|
151 |
+
def on_files_upload(files):
|
152 |
+
# save files to files dir
|
153 |
+
if not os.path.exists("pdfs"):
|
154 |
+
os.makedirs("pdfs", exist_ok=True)
|
155 |
+
# print(f"The directory 'pdfs' was created!");
|
156 |
+
files_dir = "pdfs"
|
157 |
+
for fileobj in files:
|
158 |
+
path = files_dir + "/" + os.path.basename(fileobj)
|
159 |
+
shutil.copyfile(fileobj.name, path)
|
160 |
+
# checkbox group update
|
161 |
+
full_filenames = [file.name for file in files]
|
162 |
+
filenames = [os.path.basename(path) for path in full_filenames]
|
163 |
+
return(gr.CheckboxGroup(choices=filenames))
|
164 |
+
|
165 |
+
# Define a function to be called when files are cleared
|
166 |
+
def on_files_cleared():
|
167 |
+
if os.path.exists("pdfs"):
|
168 |
+
shutil.rmtree("pdfs")
|
169 |
+
# print(f"The directory was removed!");
|
170 |
+
return(gr.CheckboxGroup(choices=[]))
|
171 |
+
|
172 |
+
# Define the Gradio interface
|
173 |
+
title = "Deep Learning - Natural Language Processing"
|
174 |
+
subtitle = "Questão e Resposta assistida por LLMs sobre documentos PDF"
|
175 |
+
authors = "Hugo Cavalaria | Nuno Seiça | Ricardo Neves | Wilton Nagase"
|
176 |
+
custom_layout = "<h1>{}</h1><h2>{}</h2><p>{}</p>".format(title,subtitle,authors)
|
177 |
+
|
178 |
+
# Get the list of languages available
|
179 |
+
translate_output = TranslateOutput(credentials)
|
180 |
+
language_names = [i for i in translate_output.list_languages()]
|
181 |
+
|
182 |
+
# Gradio Interface
|
183 |
+
with gr.Blocks() as interface:
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column(scale=2):
|
186 |
+
gr.HTML(custom_layout)
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
with gr.Column(scale=1):
|
190 |
+
upload_pdfs = gr.Files(label="Fazer upload de ficheiros PDF", interactive=True, file_types=['.pdf'], container=True)
|
191 |
+
checkbox_group = gr.CheckboxGroup(label="Selecionar os ficheiros a utilizar.", choices=[], interactive=True)
|
192 |
+
question_text = gr.Textbox(label="Pergunta:")
|
193 |
+
answer_language = gr.Dropdown(label="Selecionar uma linguagem para tradução da resposta.", choices=language_names, value="Portuguese")
|
194 |
+
secret_key = gr.Textbox(label="OpenAI API Key:")
|
195 |
+
with gr.Column(scale=1):
|
196 |
+
output_status = gr.Textbox(label="Resposta:")
|
197 |
+
|
198 |
+
btn = gr.Button("Perguntar")
|
199 |
+
|
200 |
+
btn.click(fn=run_qa,
|
201 |
+
inputs=[upload_pdfs,checkbox_group,question_text,answer_language,secret_key],
|
202 |
+
outputs=[output_status])
|
203 |
+
|
204 |
+
upload_pdfs.upload(fn=on_files_upload,
|
205 |
+
inputs=[upload_pdfs],
|
206 |
+
outputs=[checkbox_group],
|
207 |
+
show_progress="full")
|
208 |
+
|
209 |
+
upload_pdfs.clear(fn=on_files_cleared,
|
210 |
+
inputs=None,
|
211 |
+
outputs=[checkbox_group])
|
212 |
+
|
213 |
+
"""## Launch Interface"""
|
214 |
+
# launch interface
|
215 |
+
if __name__ == "__main__":
|
216 |
+
interface.launch(share=False, debug=True)
|