|
# CAT-Seg🐱: Cost Aggregation for Open-Vocabulary Semantic Segmentation |
|
|
|
This is our official implementation of CAT-Seg🐱! |
|
|
|
[[arXiv](#)] [[Project](#)]<br> |
|
by [Seokju Cho](https://seokju-cho.github.io/)\*, [Heeseong Shin](https://github.com/hsshin98)\*, [Sunghwan Hong](https://sunghwanhong.github.io), Seungjun An, Seungjun Lee, [Anurag Arnab](https://anuragarnab.github.io), [Paul Hongsuck Seo](https://phseo.github.io), [Seungryong Kim](https://cvlab.korea.ac.kr) |
|
|
|
|
|
## Introduction |
|
 |
|
We introduce cost aggregation to open-vocabulary semantic segmentation, which jointly aggregates both image and text modalities within the matching cost. |
|
|
|
## Installation |
|
Install required packages. |
|
|
|
```bash |
|
conda create --name catseg python=3.8 |
|
conda activate catseg |
|
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## Data Preparation |
|
|
|
|
|
## Training |
|
### Preparation |
|
you have to blah |
|
### Training script |
|
```bash |
|
python train.py --config configs/eval/{a847 | pc459 | a150 | pc59 | pas20 | pas20b}.yaml |
|
``` |
|
|
|
## Evaluation |
|
```bash |
|
python eval.py --config configs/eval/{a847 | pc459 | a150 | pc59 | pas20 | pas20b}.yaml |
|
``` |
|
|
|
## Citing CAT-Seg🐱 :pray: |
|
|
|
```BibTeX |
|
@article{liang2022open, |
|
title={Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP}, |
|
author={Liang, Feng and Wu, Bichen and Dai, Xiaoliang and Li, Kunpeng and Zhao, Yinan and Zhang, Hang and Zhang, Peizhao and Vajda, Peter and Marculescu, Diana}, |
|
journal={arXiv preprint arXiv:2210.04150}, |
|
year={2022} |
|
} |
|
``` |