Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from PyPDF2 import PdfReader | |
import requests | |
from bs4 import BeautifulSoup | |
# Initialize the Inference Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def extract_text_from_pdf(file): | |
if file is None: | |
return "" | |
reader = PdfReader(file) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
def ats_friendly_checker(file): | |
resume_text = extract_text_from_pdf(file) | |
system_message = "Evaluate the following resume for ATS-friendliness and provide feedback." | |
message = resume_text | |
response = client.chat_completion( | |
[{"role": "system", "content": system_message}, {"role": "user", "content": message}], | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95 | |
).choices[0].message.content | |
feedback = response | |
return feedback | |
def scrape_job_description(url): | |
response = requests.get(url) | |
soup = BeautifulSoup(response.text, 'html.parser') | |
job_description = soup.get_text(separator=" ", strip=True) | |
return job_description | |
def resume_match_checker(file, job_url): | |
resume_text = extract_text_from_pdf(file) | |
job_description = scrape_job_description(job_url) | |
system_message = "Compare the following resume with the job description and provide feedback." | |
message = f"Resume: {resume_text}\n\nJob Description: {job_description}" | |
response = client.chat_completion( | |
[{"role": "system", "content": system_message}, {"role": "user", "content": message}], | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95 | |
).choices[0].message.content | |
feedback = response | |
return feedback | |
def resume_quality_score(file): | |
resume_text = extract_text_from_pdf(file) | |
system_message = "Evaluate the following resume for overall quality and provide feedback." | |
message = resume_text | |
response = client.chat_completion( | |
[{"role": "system", "content": system_message}, {"role": "user", "content": message}], | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95 | |
).choices[0].message.content | |
interpretation = response | |
return interpretation | |
def text_to_overleaf(resume_text): | |
system_message = "Convert the following resume text to Overleaf code." | |
message = resume_text | |
response = client.chat_completion( | |
[{"role": "system", "content": system_message}, {"role": "user", "content": message}], | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95 | |
).choices[0].message.content | |
overleaf_code = response | |
return overleaf_code | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Resume Enhancement Tool\nEnhance your resume with the following features.") | |
with gr.Tab("ATS-Friendly Checker"): | |
with gr.Row(): | |
resume = gr.File(label="Upload your Resume (PDF)") | |
feedback = gr.Textbox(label="Feedback", interactive=False, lines=15, max_lines=50) # Increase lines to fill the page | |
resume.upload(ats_friendly_checker, resume, feedback) | |
with gr.Tab("Resume Match Checker"): | |
with gr.Row(): | |
resume = gr.File(label="Upload your Resume (PDF)") | |
job_url = gr.Textbox(label="Job Description URL") | |
feedback = gr.Textbox(label="Feedback", interactive=False, lines=15, max_lines=50) # Increase lines to fill the page | |
gr.Button("Check Match").click(resume_match_checker, [resume, job_url], feedback) | |
with gr.Tab("Resume Quality Score"): | |
with gr.Row(): | |
resume = gr.File(label="Upload your Resume (PDF)") | |
interpretation = gr.Textbox(label="Interpretation", interactive=False, lines=15, max_lines=50) # Increase lines to fill the page | |
resume.upload(resume_quality_score, resume, interpretation) | |
with gr.Tab("Text to Overleaf Code"): | |
with gr.Row(): | |
resume_text = gr.Textbox(label="Resume Text") | |
overleaf_code = gr.Textbox(label="Overleaf Code", interactive=False, lines=15, max_lines=50) # Increase lines to fill the page | |
resume_text.submit(text_to_overleaf, resume_text, overleaf_code) | |
gr.Markdown("---\nBuilt with love by [Bahae Eddine HALIM](https://www.linkedin.com/in/halimbahae/)") | |
if __name__ == "__main__": | |
demo.launch(share=True) | |