File size: 4,382 Bytes
5302799
 
b89bba2
66bf5cc
 
5302799
 
 
 
66bf5cc
c9c2072
 
97ad829
66bf5cc
c9052ff
 
66bf5cc
 
 
 
ed7680f
66bf5cc
 
 
 
 
 
c9c2072
66bf5cc
ed7680f
 
5302799
66bf5cc
 
 
 
 
 
 
 
 
ed7680f
66bf5cc
 
 
 
 
 
c9c2072
66bf5cc
ed7680f
 
5302799
66bf5cc
 
ed7680f
66bf5cc
 
 
 
 
 
c9c2072
66bf5cc
ed7680f
 
5302799
 
66bf5cc
 
 
 
 
 
 
c9c2072
66bf5cc
 
5302799
 
 
 
 
 
 
 
 
ed7680f
 
5302799
 
 
 
66bf5cc
ed7680f
 
5302799
 
 
 
ed7680f
 
5302799
 
 
 
ed7680f
5302799
 
 
 
 
c9c2072
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
from huggingface_hub import InferenceClient
from PyPDF2 import PdfReader
import requests
from bs4 import BeautifulSoup

# Initialize the Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def extract_text_from_pdf(file):
    if file is None:
        return ""
    reader = PdfReader(file)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

def ats_friendly_checker(file):
    resume_text = extract_text_from_pdf(file)
    system_message = "Evaluate the following resume for ATS-friendliness and provide feedback."
    message = resume_text
    response = client.chat_completion(
        [{"role": "system", "content": system_message}, {"role": "user", "content": message}],
        max_tokens=512,
        temperature=0.7,
        top_p=0.95
    ).choices[0].message.content
    
    feedback = response
    return feedback

def scrape_job_description(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    job_description = soup.get_text(separator=" ", strip=True)
    return job_description

def resume_match_checker(file, job_url):
    resume_text = extract_text_from_pdf(file)
    job_description = scrape_job_description(job_url)
    system_message = "Compare the following resume with the job description and provide feedback."
    message = f"Resume: {resume_text}\n\nJob Description: {job_description}"
    response = client.chat_completion(
        [{"role": "system", "content": system_message}, {"role": "user", "content": message}],
        max_tokens=512,
        temperature=0.7,
        top_p=0.95
    ).choices[0].message.content

    feedback = response
    return feedback

def resume_quality_score(file):
    resume_text = extract_text_from_pdf(file)
    system_message = "Evaluate the following resume for overall quality and provide feedback."
    message = resume_text
    response = client.chat_completion(
        [{"role": "system", "content": system_message}, {"role": "user", "content": message}],
        max_tokens=512,
        temperature=0.7,
        top_p=0.95
    ).choices[0].message.content

    interpretation = response
    return interpretation

def text_to_overleaf(resume_text):
    system_message = "Convert the following resume text to Overleaf code."
    message = resume_text
    response = client.chat_completion(
        [{"role": "system", "content": system_message}, {"role": "user", "content": message}],
        max_tokens=512,
        temperature=0.7,
        top_p=0.95
    ).choices[0].message.content
    
    overleaf_code = response
    return overleaf_code

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Resume Enhancement Tool\nEnhance your resume with the following features.")
    
    with gr.Tab("ATS-Friendly Checker"):
        with gr.Row():
            resume = gr.File(label="Upload your Resume (PDF)")
            feedback = gr.Textbox(label="Feedback", interactive=False, lines=15, max_lines=50)  # Increase lines to fill the page
        resume.upload(ats_friendly_checker, resume, feedback)
    
    with gr.Tab("Resume Match Checker"):
        with gr.Row():
            resume = gr.File(label="Upload your Resume (PDF)")
            job_url = gr.Textbox(label="Job Description URL")
            feedback = gr.Textbox(label="Feedback", interactive=False, lines=15, max_lines=50)  # Increase lines to fill the page
        gr.Button("Check Match").click(resume_match_checker, [resume, job_url], feedback)
    
    with gr.Tab("Resume Quality Score"):
        with gr.Row():
            resume = gr.File(label="Upload your Resume (PDF)")
            interpretation = gr.Textbox(label="Interpretation", interactive=False, lines=15, max_lines=50)  # Increase lines to fill the page
        resume.upload(resume_quality_score, resume, interpretation)
    
    with gr.Tab("Text to Overleaf Code"):
        with gr.Row():
            resume_text = gr.Textbox(label="Resume Text")
            overleaf_code = gr.Textbox(label="Overleaf Code", interactive=False, lines=15, max_lines=50)  # Increase lines to fill the page
        resume_text.submit(text_to_overleaf, resume_text, overleaf_code)

    gr.Markdown("---\nBuilt with love by [Bahae Eddine HALIM](https://www.linkedin.com/in/halimbahae/)")

if __name__ == "__main__":
    demo.launch(share=True)