Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,86 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
3 |
|
4 |
# Initialize the Inference Client
|
5 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
6 |
|
7 |
-
def
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
return score, feedback
|
13 |
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
return match_score
|
19 |
|
20 |
-
def resume_quality_score(
|
21 |
-
|
22 |
-
#
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
return quality_score
|
25 |
|
26 |
def text_to_overleaf(resume_text):
|
27 |
-
# Implement the conversion to Overleaf code
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return overleaf_code
|
31 |
|
32 |
-
def respond(
|
33 |
-
message,
|
34 |
-
history: list[tuple[str, str]],
|
35 |
-
system_message,
|
36 |
-
max_tokens,
|
37 |
-
temperature,
|
38 |
-
top_p,
|
39 |
-
):
|
40 |
-
messages = [{"role": "system", "content": system_message}]
|
41 |
-
|
42 |
-
for val in history:
|
43 |
-
if val[0]:
|
44 |
-
messages.append({"role": "user", "content": val[0]})
|
45 |
-
if val[1]:
|
46 |
-
messages.append({"role": "assistant", "content": val[1]})
|
47 |
-
|
48 |
-
messages.append({"role": "user", "content": message})
|
49 |
-
|
50 |
-
response = ""
|
51 |
-
|
52 |
-
for message in client.chat_completion(
|
53 |
-
messages,
|
54 |
-
max_tokens=max_tokens,
|
55 |
-
stream=True,
|
56 |
-
temperature=temperature,
|
57 |
-
top_p=top_p,
|
58 |
-
):
|
59 |
-
token = message.choices[0].delta.content
|
60 |
-
|
61 |
-
response += token
|
62 |
-
yield response
|
63 |
-
|
64 |
# Define the Gradio interface
|
65 |
with gr.Blocks() as demo:
|
66 |
gr.Markdown("# Resume Enhancement Tool\nEnhance your resume with the following features.")
|
@@ -75,9 +95,9 @@ with gr.Blocks() as demo:
|
|
75 |
with gr.Tab("Resume Match Checker"):
|
76 |
with gr.Row():
|
77 |
resume = gr.File(label="Upload your Resume (PDF)")
|
78 |
-
|
79 |
match_score = gr.Number(label="Match Score", interactive=False)
|
80 |
-
|
81 |
|
82 |
with gr.Tab("Resume Quality Score"):
|
83 |
with gr.Row():
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from PyPDF2 import PdfFileReader
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
|
7 |
# Initialize the Inference Client
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
10 |
+
def extract_text_from_pdf(file):
|
11 |
+
reader = PdfFileReader(file)
|
12 |
+
text = ""
|
13 |
+
for page in range(reader.getNumPages()):
|
14 |
+
text += reader.getPage(page).extract_text()
|
15 |
+
return text
|
16 |
+
|
17 |
+
def ats_friendly_checker(file):
|
18 |
+
resume_text = extract_text_from_pdf(file)
|
19 |
+
# Implement ATS-friendly checker logic using LLM
|
20 |
+
system_message = "Evaluate the following resume for ATS-friendliness and provide a score and feedback."
|
21 |
+
message = resume_text
|
22 |
+
response = client.chat_completion(
|
23 |
+
[{"role": "system", "content": system_message}, {"role": "user", "content": message}],
|
24 |
+
max_tokens=512,
|
25 |
+
temperature=0.7,
|
26 |
+
top_p=0.95
|
27 |
+
).choices[0].message["content"]
|
28 |
+
|
29 |
+
score = response.split("\n")[0].split(":")[-1].strip()
|
30 |
+
feedback = "\n".join(response.split("\n")[1:])
|
31 |
return score, feedback
|
32 |
|
33 |
+
def scrape_job_description(url):
|
34 |
+
response = requests.get(url)
|
35 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
36 |
+
job_description = soup.get_text(separator=" ", strip=True)
|
37 |
+
return job_description
|
38 |
+
|
39 |
+
def resume_match_checker(file, job_url):
|
40 |
+
resume_text = extract_text_from_pdf(file)
|
41 |
+
job_description = scrape_job_description(job_url)
|
42 |
+
# Implement resume match checker logic using LLM
|
43 |
+
system_message = "Compare the following resume with the job description and provide a match score."
|
44 |
+
message = f"Resume: {resume_text}\n\nJob Description: {job_description}"
|
45 |
+
response = client.chat_completion(
|
46 |
+
[{"role": "system", "content": system_message}, {"role": "user", "content": message}],
|
47 |
+
max_tokens=512,
|
48 |
+
temperature=0.7,
|
49 |
+
top_p=0.95
|
50 |
+
).choices[0].message["content"]
|
51 |
+
|
52 |
+
match_score = response.split(":")[-1].strip()
|
53 |
return match_score
|
54 |
|
55 |
+
def resume_quality_score(file):
|
56 |
+
resume_text = extract_text_from_pdf(file)
|
57 |
+
# Implement resume quality scoring logic using LLM
|
58 |
+
system_message = "Evaluate the following resume for overall quality and provide a score."
|
59 |
+
message = resume_text
|
60 |
+
response = client.chat_completion(
|
61 |
+
[{"role": "system", "content": system_message}, {"role": "user", "content": message}],
|
62 |
+
max_tokens=512,
|
63 |
+
temperature=0.7,
|
64 |
+
top_p=0.95
|
65 |
+
).choices[0].message["content"]
|
66 |
+
|
67 |
+
quality_score = response.split(":")[-1].strip()
|
68 |
return quality_score
|
69 |
|
70 |
def text_to_overleaf(resume_text):
|
71 |
+
# Implement the conversion to Overleaf code using LLM
|
72 |
+
system_message = "Convert the following resume text to Overleaf code."
|
73 |
+
message = resume_text
|
74 |
+
response = client.chat_completion(
|
75 |
+
[{"role": "system", "content": system_message}, {"role": "user", "content": message}],
|
76 |
+
max_tokens=512,
|
77 |
+
temperature=0.7,
|
78 |
+
top_p=0.95
|
79 |
+
).choices[0].message["content"]
|
80 |
+
|
81 |
+
overleaf_code = response
|
82 |
return overleaf_code
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
# Define the Gradio interface
|
85 |
with gr.Blocks() as demo:
|
86 |
gr.Markdown("# Resume Enhancement Tool\nEnhance your resume with the following features.")
|
|
|
95 |
with gr.Tab("Resume Match Checker"):
|
96 |
with gr.Row():
|
97 |
resume = gr.File(label="Upload your Resume (PDF)")
|
98 |
+
job_url = gr.Textbox(label="Job Description URL")
|
99 |
match_score = gr.Number(label="Match Score", interactive=False)
|
100 |
+
gr.Button("Check Match").click(resume_match_checker, [resume, job_url], match_score)
|
101 |
|
102 |
with gr.Tab("Resume Quality Score"):
|
103 |
with gr.Row():
|