File size: 6,245 Bytes
3852d49
3683f9c
 
3852d49
3683f9c
 
 
 
 
3852d49
3683f9c
 
 
 
3852d49
 
3683f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3852d49
 
 
 
 
 
 
 
3683f9c
3852d49
3683f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3852d49
 
 
 
 
 
3683f9c
3852d49
3683f9c
3852d49
3683f9c
3852d49
 
 
 
 
 
3683f9c
 
3852d49
 
3683f9c
 
 
 
 
 
 
3852d49
 
3683f9c
 
 
 
 
 
3852d49
3683f9c
 
3852d49
 
 
3683f9c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import pandas as pd
import re
from huggingface_hub import InferenceClient
import spacy
from collections import Counter
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime

# Load SpaCy model for NLP
nlp = spacy.load("en_core_web_sm")

# Initialize Hugging Face client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def parse_message(message):
    """Extract information from a chat message using regex and NLP."""
    info = {}
    
    # Extract timestamp and phone number
    timestamp_match = re.search(r'\[(.*?)\]', message)
    phone_match = re.search(r'\] (.*?):', message)
    
    if timestamp_match and phone_match:
        info['timestamp'] = timestamp_match.group(1)
        info['phone'] = phone_match.group(1)
        
        # Extract rest of the message
        content = message.split(':', 1)[1].strip()
        
        # Extract name
        name_match = re.match(r'^([^•\n-]+)', content)
        if name_match:
            info['name'] = name_match.group(1).strip()
            
        # Extract affiliation
        affiliation_match = re.search(r'[Aa]ffiliation:?\s*([^•\n]+)', content)
        if affiliation_match:
            info['affiliation'] = affiliation_match.group(1).strip()
            
        # Extract research field/interests
        field_match = re.search(r'([Ff]ield of [Ii]nterest|[Dd]omaine de recherche|[Rr]esearch area|[Aa]reas of interest):?\s*([^•\n]+)', content)
        if field_match:
            info['research_field'] = field_match.group(2).strip()
            
        # Extract thesis topic
        thesis_match = re.search(r'[Tt]hesis:?\s*([^•\n]+)', content)
        if thesis_match:
            info['thesis_topic'] = thesis_match.group(1).strip()
            
        # Extract LinkedIn URL
        linkedin_match = re.search(r'https?://(?:www\.)?linkedin\.com\S+', content)
        if linkedin_match:
            info['linkedin'] = linkedin_match.group(0)
    
    return info

def create_researcher_df(chat_history):
    """Convert chat messages to structured DataFrame."""
    researchers = []
    messages = chat_history.split('\n')
    
    for message in messages:
        if message.strip():
            info = parse_message(message)
            if info:
                researchers.append(info)
    
    df = pd.DataFrame(researchers)
    return df

def analyze_research_fields(df):
    """Analyze and categorize research fields."""
    if 'research_field' not in df.columns:
        return pd.Series()
        
    fields = df['research_field'].dropna()
    # Split fields and flatten
    all_fields = [field.strip().lower() for fields_list in fields for field in fields_list.split(',')]
    return pd.Series(Counter(all_fields))

def create_visualizations(df):
    """Create visualizations from the researcher data."""
    figures = []
    
    # 1. Affiliation Distribution
    if 'affiliation' in df.columns:
        affiliation_counts = df['affiliation'].value_counts()
        fig_affiliation = px.pie(
            values=affiliation_counts.values,
            names=affiliation_counts.index,
            title='Distribution of Researchers by Affiliation'
        )
        figures.append(fig_affiliation)
    
    # 2. Research Fields Analysis
    field_counts = analyze_research_fields(df)
    if not field_counts.empty:
        fig_fields = px.bar(
            x=field_counts.index,
            y=field_counts.values,
            title='Popular Research Fields',
            labels={'x': 'Field', 'y': 'Count'}
        )
        figures.append(fig_fields)
    
    return figures

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    chat_history_text=""
):
    """Enhanced response function with data analysis capabilities."""
    # Process chat history if provided
    if chat_history_text:
        df = create_researcher_df(chat_history_text)
        
        # Generate analysis summary
        summary = f"Analysis of {len(df)} researchers:\n"
        if 'affiliation' in df.columns:
            summary += f"- Institutions represented: {df['affiliation'].nunique()}\n"
        
        field_counts = analyze_research_fields(df)
        if not field_counts.empty:
            top_fields = field_counts.nlargest(3)
            summary += "- Top research fields:\n"
            for field, count in top_fields.items():
                summary += f"  • {field}: {count} researchers\n"
        
        # Create visualizations
        figures = create_visualizations(df)
        
        # Add analysis to message
        message += f"\n\nCommunity Analysis:\n{summary}"
    
    # Generate response using the LLM
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    
    messages.append({"role": "user", "content": message})
    
    response = ""
    for token in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token_content = token.choices[0].delta.content
        response += token_content
        yield response

# Create enhanced Gradio interface
demo = gr.Interface(
    fn=respond,
    inputs=[
        gr.Textbox(label="Message"),
        gr.State([]),  # history
        gr.Textbox(value="You are a friendly Research Community Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
        gr.Textbox(label="Chat History", lines=10)
    ],
    outputs=[
        gr.Textbox(label="Response"),
        gr.Plot(label="Community Analysis")
    ],
    title="Research Community Analyzer",
    description="An enhanced chatbot that analyzes research community data and provides visualizations."
)

if __name__ == "__main__":
    demo.launch()