Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,111 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -14,51 +114,72 @@ def respond(
|
|
14 |
max_tokens,
|
15 |
temperature,
|
16 |
top_p,
|
|
|
17 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
33 |
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
),
|
59 |
],
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import re
|
4 |
from huggingface_hub import InferenceClient
|
5 |
+
import spacy
|
6 |
+
from collections import Counter
|
7 |
+
import plotly.express as px
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from datetime import datetime
|
10 |
|
11 |
+
# Load SpaCy model for NLP
|
12 |
+
nlp = spacy.load("en_core_web_sm")
|
13 |
+
|
14 |
+
# Initialize Hugging Face client
|
15 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
16 |
|
17 |
+
def parse_message(message):
|
18 |
+
"""Extract information from a chat message using regex and NLP."""
|
19 |
+
info = {}
|
20 |
+
|
21 |
+
# Extract timestamp and phone number
|
22 |
+
timestamp_match = re.search(r'\[(.*?)\]', message)
|
23 |
+
phone_match = re.search(r'\] (.*?):', message)
|
24 |
+
|
25 |
+
if timestamp_match and phone_match:
|
26 |
+
info['timestamp'] = timestamp_match.group(1)
|
27 |
+
info['phone'] = phone_match.group(1)
|
28 |
+
|
29 |
+
# Extract rest of the message
|
30 |
+
content = message.split(':', 1)[1].strip()
|
31 |
+
|
32 |
+
# Extract name
|
33 |
+
name_match = re.match(r'^([^•\n-]+)', content)
|
34 |
+
if name_match:
|
35 |
+
info['name'] = name_match.group(1).strip()
|
36 |
+
|
37 |
+
# Extract affiliation
|
38 |
+
affiliation_match = re.search(r'[Aa]ffiliation:?\s*([^•\n]+)', content)
|
39 |
+
if affiliation_match:
|
40 |
+
info['affiliation'] = affiliation_match.group(1).strip()
|
41 |
+
|
42 |
+
# Extract research field/interests
|
43 |
+
field_match = re.search(r'([Ff]ield of [Ii]nterest|[Dd]omaine de recherche|[Rr]esearch area|[Aa]reas of interest):?\s*([^•\n]+)', content)
|
44 |
+
if field_match:
|
45 |
+
info['research_field'] = field_match.group(2).strip()
|
46 |
+
|
47 |
+
# Extract thesis topic
|
48 |
+
thesis_match = re.search(r'[Tt]hesis:?\s*([^•\n]+)', content)
|
49 |
+
if thesis_match:
|
50 |
+
info['thesis_topic'] = thesis_match.group(1).strip()
|
51 |
+
|
52 |
+
# Extract LinkedIn URL
|
53 |
+
linkedin_match = re.search(r'https?://(?:www\.)?linkedin\.com\S+', content)
|
54 |
+
if linkedin_match:
|
55 |
+
info['linkedin'] = linkedin_match.group(0)
|
56 |
+
|
57 |
+
return info
|
58 |
+
|
59 |
+
def create_researcher_df(chat_history):
|
60 |
+
"""Convert chat messages to structured DataFrame."""
|
61 |
+
researchers = []
|
62 |
+
messages = chat_history.split('\n')
|
63 |
+
|
64 |
+
for message in messages:
|
65 |
+
if message.strip():
|
66 |
+
info = parse_message(message)
|
67 |
+
if info:
|
68 |
+
researchers.append(info)
|
69 |
+
|
70 |
+
df = pd.DataFrame(researchers)
|
71 |
+
return df
|
72 |
+
|
73 |
+
def analyze_research_fields(df):
|
74 |
+
"""Analyze and categorize research fields."""
|
75 |
+
if 'research_field' not in df.columns:
|
76 |
+
return pd.Series()
|
77 |
+
|
78 |
+
fields = df['research_field'].dropna()
|
79 |
+
# Split fields and flatten
|
80 |
+
all_fields = [field.strip().lower() for fields_list in fields for field in fields_list.split(',')]
|
81 |
+
return pd.Series(Counter(all_fields))
|
82 |
+
|
83 |
+
def create_visualizations(df):
|
84 |
+
"""Create visualizations from the researcher data."""
|
85 |
+
figures = []
|
86 |
+
|
87 |
+
# 1. Affiliation Distribution
|
88 |
+
if 'affiliation' in df.columns:
|
89 |
+
affiliation_counts = df['affiliation'].value_counts()
|
90 |
+
fig_affiliation = px.pie(
|
91 |
+
values=affiliation_counts.values,
|
92 |
+
names=affiliation_counts.index,
|
93 |
+
title='Distribution of Researchers by Affiliation'
|
94 |
+
)
|
95 |
+
figures.append(fig_affiliation)
|
96 |
+
|
97 |
+
# 2. Research Fields Analysis
|
98 |
+
field_counts = analyze_research_fields(df)
|
99 |
+
if not field_counts.empty:
|
100 |
+
fig_fields = px.bar(
|
101 |
+
x=field_counts.index,
|
102 |
+
y=field_counts.values,
|
103 |
+
title='Popular Research Fields',
|
104 |
+
labels={'x': 'Field', 'y': 'Count'}
|
105 |
+
)
|
106 |
+
figures.append(fig_fields)
|
107 |
+
|
108 |
+
return figures
|
109 |
|
110 |
def respond(
|
111 |
message,
|
|
|
114 |
max_tokens,
|
115 |
temperature,
|
116 |
top_p,
|
117 |
+
chat_history_text=""
|
118 |
):
|
119 |
+
"""Enhanced response function with data analysis capabilities."""
|
120 |
+
# Process chat history if provided
|
121 |
+
if chat_history_text:
|
122 |
+
df = create_researcher_df(chat_history_text)
|
123 |
+
|
124 |
+
# Generate analysis summary
|
125 |
+
summary = f"Analysis of {len(df)} researchers:\n"
|
126 |
+
if 'affiliation' in df.columns:
|
127 |
+
summary += f"- Institutions represented: {df['affiliation'].nunique()}\n"
|
128 |
+
|
129 |
+
field_counts = analyze_research_fields(df)
|
130 |
+
if not field_counts.empty:
|
131 |
+
top_fields = field_counts.nlargest(3)
|
132 |
+
summary += "- Top research fields:\n"
|
133 |
+
for field, count in top_fields.items():
|
134 |
+
summary += f" • {field}: {count} researchers\n"
|
135 |
+
|
136 |
+
# Create visualizations
|
137 |
+
figures = create_visualizations(df)
|
138 |
+
|
139 |
+
# Add analysis to message
|
140 |
+
message += f"\n\nCommunity Analysis:\n{summary}"
|
141 |
+
|
142 |
+
# Generate response using the LLM
|
143 |
messages = [{"role": "system", "content": system_message}]
|
|
|
144 |
for val in history:
|
145 |
if val[0]:
|
146 |
messages.append({"role": "user", "content": val[0]})
|
147 |
if val[1]:
|
148 |
messages.append({"role": "assistant", "content": val[1]})
|
149 |
+
|
150 |
messages.append({"role": "user", "content": message})
|
151 |
+
|
152 |
response = ""
|
153 |
+
for token in client.chat_completion(
|
|
|
154 |
messages,
|
155 |
max_tokens=max_tokens,
|
156 |
stream=True,
|
157 |
temperature=temperature,
|
158 |
top_p=top_p,
|
159 |
):
|
160 |
+
token_content = token.choices[0].delta.content
|
161 |
+
response += token_content
|
|
|
162 |
yield response
|
163 |
|
164 |
+
# Create enhanced Gradio interface
|
165 |
+
demo = gr.Interface(
|
166 |
+
fn=respond,
|
167 |
+
inputs=[
|
168 |
+
gr.Textbox(label="Message"),
|
169 |
+
gr.State([]), # history
|
170 |
+
gr.Textbox(value="You are a friendly Research Community Chatbot.", label="System message"),
|
|
|
171 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
172 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
173 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
174 |
+
gr.Textbox(label="Chat History", lines=10)
|
175 |
+
],
|
176 |
+
outputs=[
|
177 |
+
gr.Textbox(label="Response"),
|
178 |
+
gr.Plot(label="Community Analysis")
|
|
|
179 |
],
|
180 |
+
title="Research Community Analyzer",
|
181 |
+
description="An enhanced chatbot that analyzes research community data and provides visualizations."
|
182 |
)
|
183 |
|
|
|
184 |
if __name__ == "__main__":
|
185 |
+
demo.launch()
|