|
import gradio as gr |
|
import numpy as np |
|
import librosa |
|
from transformers import pipeline |
|
from datetime import datetime |
|
import os |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
|
|
|
|
model_id = "runwayml/stable-diffusion-v1-5" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
if torch.cuda.is_available(): |
|
pipe = pipe.to("cuda") |
|
|
|
|
|
speech_recognizer = pipeline( |
|
"automatic-speech-recognition", |
|
model="kresnik/wav2vec2-large-xlsr-korean" |
|
) |
|
emotion_classifier = pipeline( |
|
"audio-classification", |
|
model="MIT/ast-finetuned-speech-commands-v2" |
|
) |
|
text_analyzer = pipeline( |
|
"sentiment-analysis", |
|
model="nlptown/bert-base-multilingual-uncased-sentiment" |
|
) |
|
|
|
def create_interface(): |
|
with gr.Blocks(theme=gr.themes.Soft()) as app: |
|
state = gr.State({ |
|
"user_name": "", |
|
"reflections": [], |
|
"voice_analysis": None, |
|
"final_prompt": "", |
|
"generated_images": [] |
|
}) |
|
|
|
|
|
header = gr.Markdown("# 디지털 굿판") |
|
user_display = gr.Markdown("") |
|
|
|
with gr.Tabs() as tabs: |
|
|
|
with gr.Tab("입장"): |
|
gr.Markdown("""# 디지털 굿판에 오신 것을 환영합니다""") |
|
name_input = gr.Textbox(label="이름을 알려주세요") |
|
start_btn = gr.Button("여정 시작하기") |
|
|
|
|
|
with gr.Tab("청신"): |
|
with gr.Row(): |
|
|
|
audio_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "assets", "main_music.mp3")) |
|
audio = gr.Audio( |
|
value=audio_path, |
|
type="filepath", |
|
label="온천천의 소리", |
|
interactive=False, |
|
autoplay=True |
|
) |
|
with gr.Column(): |
|
reflection_input = gr.Textbox( |
|
label="현재 순간의 감상을 적어주세요", |
|
lines=3 |
|
) |
|
save_btn = gr.Button("감상 저장하기") |
|
reflections_display = gr.Dataframe( |
|
headers=["시간", "감상", "감정 분석"], |
|
label="기록된 감상들" |
|
) |
|
|
|
|
|
with gr.Tab("기원"): |
|
gr.Markdown("## 기원 - 목소리로 전하기") |
|
with gr.Row(): |
|
with gr.Column(): |
|
record_btn = gr.Button("🎤 녹음 시작/중지") |
|
voice_input = gr.Audio( |
|
label="나누고 싶은 이야기를 들려주세요", |
|
sources=["microphone"], |
|
type="filepath", |
|
interactive=True |
|
) |
|
clear_btn = gr.Button("녹음 지우기") |
|
|
|
with gr.Column(): |
|
transcribed_text = gr.Textbox( |
|
label="인식된 텍스트", |
|
interactive=False |
|
) |
|
voice_emotion = gr.Textbox( |
|
label="음성 감정 분석", |
|
interactive=False |
|
) |
|
text_emotion = gr.Textbox( |
|
label="텍스트 감정 분석", |
|
interactive=False |
|
) |
|
analyze_btn = gr.Button("분석하기") |
|
|
|
|
|
with gr.Tab("송신"): |
|
gr.Markdown("## 송신 - 시각화 결과") |
|
with gr.Column(): |
|
final_prompt = gr.Textbox( |
|
label="생성된 프롬프트", |
|
interactive=False |
|
) |
|
generate_btn = gr.Button("이미지 생성하기") |
|
gallery = gr.Gallery( |
|
label="시각화 결과", |
|
columns=2, |
|
show_label=True, |
|
elem_id="gallery" |
|
) |
|
|
|
def clear_voice_input(): |
|
"""음성 입력 초기화""" |
|
return None |
|
|
|
def analyze_voice(audio_path, state): |
|
"""음성 분석""" |
|
if audio_path is None: |
|
return state, "음성을 먼저 녹음해주세요.", "", "", "" |
|
|
|
try: |
|
|
|
y, sr = librosa.load(audio_path, sr=16000) |
|
|
|
|
|
transcription = speech_recognizer(y) |
|
text = transcription["text"] |
|
|
|
|
|
voice_emotions = emotion_classifier(y) |
|
text_sentiment = text_analyzer(text)[0] |
|
|
|
return ( |
|
state, |
|
text, |
|
f"음성 감정: {voice_emotions[0]['label']} ({voice_emotions[0]['score']:.2f})", |
|
f"텍스트 감정: {text_sentiment['label']} ({text_sentiment['score']:.2f})", |
|
"분석이 완료되었습니다." |
|
) |
|
except Exception as e: |
|
return state, f"오류 발생: {str(e)}", "", "", "" |
|
|
|
def generate_image(prompt, state): |
|
"""이미지 생성""" |
|
try: |
|
images = pipe(prompt).images |
|
image_paths = [] |
|
for i, image in enumerate(images): |
|
path = f"output_{i}.png" |
|
image.save(path) |
|
image_paths.append(path) |
|
return image_paths |
|
except Exception as e: |
|
return [] |
|
|
|
|
|
start_btn.click( |
|
fn=lambda name: (f"# 환영합니다, {name}님의 디지털 굿판", gr.update(selected="청신")), |
|
inputs=[name_input], |
|
outputs=[user_display, tabs] |
|
) |
|
|
|
save_btn.click( |
|
fn=lambda text, state: save_reflection(text, state), |
|
inputs=[reflection_input, state], |
|
outputs=[state, reflections_display] |
|
) |
|
|
|
clear_btn.click( |
|
fn=clear_voice_input, |
|
inputs=[], |
|
outputs=[voice_input] |
|
) |
|
|
|
analyze_btn.click( |
|
fn=analyze_voice, |
|
inputs=[voice_input, state], |
|
outputs=[state, transcribed_text, voice_emotion, text_emotion, final_prompt] |
|
) |
|
|
|
generate_btn.click( |
|
fn=generate_image, |
|
inputs=[final_prompt, state], |
|
outputs=[gallery] |
|
) |
|
|
|
return app |
|
|
|
if __name__ == "__main__": |
|
demo = create_interface() |
|
demo.launch() |