File size: 7,096 Bytes
bb63470
 
 
 
00ada4a
db42dba
e006b08
 
 
 
 
 
 
 
bb63470
db42dba
6045e4a
 
e006b08
6045e4a
 
 
 
 
 
 
 
 
00ada4a
7ec9920
 
 
9d47e7f
6045e4a
 
 
e006b08
7ec9920
db42dba
9d47e7f
 
 
 
 
6045e4a
 
 
9d47e7f
 
 
6045e4a
 
9d47e7f
e006b08
 
9d47e7f
e006b08
9d47e7f
e006b08
 
 
9d47e7f
 
 
 
 
db42dba
9d47e7f
 
6045e4a
9d47e7f
db42dba
 
6045e4a
 
 
9d47e7f
e006b08
 
 
 
 
 
 
 
 
9d47e7f
 
6045e4a
 
 
 
 
 
 
 
 
 
 
 
e006b08
db42dba
6045e4a
 
 
 
 
 
 
 
e006b08
6045e4a
 
e006b08
 
 
6045e4a
9d47e7f
e006b08
 
 
6045e4a
e006b08
 
 
 
 
 
6045e4a
 
e006b08
 
6045e4a
e006b08
 
 
6045e4a
e006b08
 
db42dba
6045e4a
e006b08
 
6045e4a
e006b08
db42dba
7ec9920
e006b08
6045e4a
e006b08
 
 
 
 
 
 
 
 
 
 
 
db42dba
7ec9920
9d47e7f
e006b08
9d47e7f
 
db42dba
6045e4a
9d47e7f
e006b08
db42dba
7ec9920
 
6045e4a
e006b08
 
 
 
 
 
 
 
db42dba
e006b08
 
 
 
 
 
 
db42dba
 
7ec9920
9f7512d
bb63470
9d47e7f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
import numpy as np
import librosa
from transformers import pipeline
from datetime import datetime
import os
from diffusers import StableDiffusionPipeline
import torch

# 스테이블 디퓨전 초기화
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
if torch.cuda.is_available():
    pipe = pipe.to("cuda")

# AI 모델 초기화
speech_recognizer = pipeline(
    "automatic-speech-recognition",
    model="kresnik/wav2vec2-large-xlsr-korean"
)
emotion_classifier = pipeline(
    "audio-classification",
    model="MIT/ast-finetuned-speech-commands-v2"
)
text_analyzer = pipeline(
    "sentiment-analysis",
    model="nlptown/bert-base-multilingual-uncased-sentiment"
)

def create_interface():
    with gr.Blocks(theme=gr.themes.Soft()) as app:
        state = gr.State({
            "user_name": "",
            "reflections": [],
            "voice_analysis": None,
            "final_prompt": "",
            "generated_images": []
        })

        # 헤더
        header = gr.Markdown("# 디지털 굿판")
        user_display = gr.Markdown("")

        with gr.Tabs() as tabs:
            # 입장
            with gr.Tab("입장"):
                gr.Markdown("""# 디지털 굿판에 오신 것을 환영합니다""")
                name_input = gr.Textbox(label="이름을 알려주세요")
                start_btn = gr.Button("여정 시작하기")

            # 청신
            with gr.Tab("청신"):
                with gr.Row():
                    # 절대 경로로 변경
                    audio_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "assets", "main_music.mp3"))
                    audio = gr.Audio(
                        value=audio_path,
                        type="filepath",
                        label="온천천의 소리",
                        interactive=False,
                        autoplay=True
                    )
                    with gr.Column():
                        reflection_input = gr.Textbox(
                            label="현재 순간의 감상을 적어주세요",
                            lines=3
                        )
                        save_btn = gr.Button("감상 저장하기")
                        reflections_display = gr.Dataframe(
                            headers=["시간", "감상", "감정 분석"],
                            label="기록된 감상들"
                        )

            # 기원
            with gr.Tab("기원"):
                gr.Markdown("## 기원 - 목소리로 전하기")
                with gr.Row():
                    with gr.Column():
                        record_btn = gr.Button("🎤 녹음 시작/중지")
                        voice_input = gr.Audio(
                            label="나누고 싶은 이야기를 들려주세요",
                            sources=["microphone"],
                            type="filepath",
                            interactive=True
                        )
                        clear_btn = gr.Button("녹음 지우기")
                    
                    with gr.Column():
                        transcribed_text = gr.Textbox(
                            label="인식된 텍스트",
                            interactive=False
                        )
                        voice_emotion = gr.Textbox(
                            label="음성 감정 분석",
                            interactive=False
                        )
                        text_emotion = gr.Textbox(
                            label="텍스트 감정 분석",
                            interactive=False
                        )
                        analyze_btn = gr.Button("분석하기")

            # 송신
            with gr.Tab("송신"):
                gr.Markdown("## 송신 - 시각화 결과")
                with gr.Column():
                    final_prompt = gr.Textbox(
                        label="생성된 프롬프트",
                        interactive=False
                    )
                    generate_btn = gr.Button("이미지 생성하기")
                    gallery = gr.Gallery(
                        label="시각화 결과",
                        columns=2,
                        show_label=True,
                        elem_id="gallery"
                    )

        def clear_voice_input():
            """음성 입력 초기화"""
            return None

        def analyze_voice(audio_path, state):
            """음성 분석"""
            if audio_path is None:
                return state, "음성을 먼저 녹음해주세요.", "", "", ""
            
            try:
                # 오디오 로드
                y, sr = librosa.load(audio_path, sr=16000)
                
                # 음성 인식
                transcription = speech_recognizer(y)
                text = transcription["text"]
                
                # 감정 분석
                voice_emotions = emotion_classifier(y)
                text_sentiment = text_analyzer(text)[0]
                
                return (
                    state,
                    text,
                    f"음성 감정: {voice_emotions[0]['label']} ({voice_emotions[0]['score']:.2f})",
                    f"텍스트 감정: {text_sentiment['label']} ({text_sentiment['score']:.2f})",
                    "분석이 완료되었습니다."
                )
            except Exception as e:
                return state, f"오류 발생: {str(e)}", "", "", ""

        def generate_image(prompt, state):
            """이미지 생성"""
            try:
                images = pipe(prompt).images
                image_paths = []
                for i, image in enumerate(images):
                    path = f"output_{i}.png"
                    image.save(path)
                    image_paths.append(path)
                return image_paths
            except Exception as e:
                return []

        # 이벤트 연결
        start_btn.click(
            fn=lambda name: (f"# 환영합니다, {name}님의 디지털 굿판", gr.update(selected="청신")),
            inputs=[name_input],
            outputs=[user_display, tabs]
        )

        save_btn.click(
            fn=lambda text, state: save_reflection(text, state),
            inputs=[reflection_input, state],
            outputs=[state, reflections_display]
        )

        clear_btn.click(
            fn=clear_voice_input,
            inputs=[],
            outputs=[voice_input]
        )

        analyze_btn.click(
            fn=analyze_voice,
            inputs=[voice_input, state],
            outputs=[state, transcribed_text, voice_emotion, text_emotion, final_prompt]
        )

        generate_btn.click(
            fn=generate_image,
            inputs=[final_prompt, state],
            outputs=[gallery]
        )

    return app

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()