File size: 11,062 Bytes
bb63470
 
 
 
00ada4a
db42dba
8b6ea6c
e006b08
188b936
 
 
 
 
8b6ea6c
 
188b936
bb63470
db42dba
6045e4a
 
e006b08
6045e4a
 
 
 
 
 
 
 
 
5db3ce1
 
188b936
5db3ce1
00ada4a
8b6ea6c
188b936
 
8b6ea6c
188b936
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6ea6c
188b936
8b6ea6c
 
188b936
e8d592d
8b6ea6c
188b936
 
8b6ea6c
188b936
8b6ea6c
188b936
8b6ea6c
 
e8d592d
 
 
 
 
 
 
 
db42dba
9d47e7f
 
 
 
 
6045e4a
 
 
9d47e7f
 
 
6045e4a
 
9d47e7f
8b6ea6c
9d47e7f
e006b08
9d47e7f
e006b08
 
 
9d47e7f
 
 
 
 
db42dba
9d47e7f
 
6045e4a
9d47e7f
db42dba
 
6045e4a
 
 
9d47e7f
e006b08
 
 
 
 
 
 
 
9d47e7f
 
6045e4a
 
 
 
 
 
 
 
 
 
 
 
e006b08
db42dba
e8d592d
 
 
 
 
 
 
 
 
 
 
 
 
 
9d47e7f
e006b08
 
 
6045e4a
e006b08
5db3ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6045e4a
5db3ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6ea6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db42dba
7ec9920
9d47e7f
e006b08
9d47e7f
 
db42dba
6045e4a
9d47e7f
8b6ea6c
db42dba
7ec9920
 
6045e4a
e006b08
 
 
 
 
 
 
 
db42dba
e006b08
 
 
e8d592d
 
 
188b936
 
e8d592d
 
 
9f7512d
bb63470
9d47e7f
188b936
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import gradio as gr
import numpy as np
import librosa
from transformers import pipeline
from datetime import datetime
import os
import requests

# 환경변수에서 토큰 가져오기
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
if not HF_API_TOKEN:
    raise ValueError("HF_API_TOKEN not found in environment variables")

# Inference API 설정
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}

# AI 모델 초기화
speech_recognizer = pipeline(
    "automatic-speech-recognition",
    model="kresnik/wav2vec2-large-xlsr-korean"
)
emotion_classifier = pipeline(
    "audio-classification",
    model="MIT/ast-finetuned-speech-commands-v2"
)
text_analyzer = pipeline(
    "sentiment-analysis",
    model="nlptown/bert-base-multilingual-uncased-sentiment"
)
korean_sentiment = pipeline(
    "text-classification",
    model="searle-j/korean_sentiment_analysis"
)

def generate_image_from_prompt(prompt):
    """이미지 생성 함수"""
    print(f"Generating image with prompt: {prompt}")  # 디버깅용
    try:
        if not prompt:
            print("No prompt provided")
            return None
            
        response = requests.post(
            API_URL,
            headers=headers,
            json={
                "inputs": prompt,
                "parameters": {
                    "negative_prompt": "ugly, blurry, poor quality, distorted",
                    "num_inference_steps": 30,
                    "guidance_scale": 7.5
                }
            }
        )
        
        if response.status_code == 200:
            print("Image generated successfully")
            return response.content
        else:
            print(f"Error: {response.status_code}")
            print(f"Response: {response.text}")
            return None
            
    except Exception as e:
        print(f"Error generating image: {str(e)}")
        return None

def create_interface():
    with gr.Blocks(theme=gr.themes.Soft()) as app:
        state = gr.State({
            "user_name": "",
            "reflections": [],
            "voice_analysis": None,
            "final_prompt": ""
        })

        # 헤더
        header = gr.Markdown("# 디지털 굿판")
        user_display = gr.Markdown("")

        with gr.Tabs() as tabs:
            # 입장
            with gr.Tab("입장"):
                gr.Markdown("""# 디지털 굿판에 오신 것을 환영합니다""")
                name_input = gr.Textbox(label="이름을 알려주세요")
                start_btn = gr.Button("여정 시작하기")

            # 청신
            with gr.Tab("청신"):
                with gr.Row():
                    audio_path = os.path.abspath(os.path.join("assets", "main_music.mp3"))
                    audio = gr.Audio(
                        value=audio_path,
                        type="filepath",
                        label="온천천의 소리",
                        interactive=False,
                        autoplay=True
                    )
                    with gr.Column():
                        reflection_input = gr.Textbox(
                            label="현재 순간의 감상을 적어주세요",
                            lines=3
                        )
                        save_btn = gr.Button("감상 저장하기")
                        reflections_display = gr.Dataframe(
                            headers=["시간", "감상", "감정 분석"],
                            label="기록된 감상들"
                        )

            # 기원
            with gr.Tab("기원"):
                gr.Markdown("## 기원 - 목소리로 전하기")
                with gr.Row():
                    with gr.Column():
                        voice_input = gr.Audio(
                            label="나누고 싶은 이야기를 들려주세요",
                            sources=["microphone"],
                            type="filepath",
                            interactive=True
                        )
                        clear_btn = gr.Button("녹음 지우기")
                    
                    with gr.Column():
                        transcribed_text = gr.Textbox(
                            label="인식된 텍스트",
                            interactive=False
                        )
                        voice_emotion = gr.Textbox(
                            label="음성 감정 분석",
                            interactive=False
                        )
                        text_emotion = gr.Textbox(
                            label="텍스트 감정 분석",
                            interactive=False
                        )
                        analyze_btn = gr.Button("분석하기")

            # 송신
            with gr.Tab("송신"):
                gr.Markdown("## 송신 - 시각화 결과")
                with gr.Column():
                    final_prompt = gr.Textbox(
                        label="생성된 프롬프트",
                        interactive=False,
                        lines=3
                    )
                    generate_btn = gr.Button("이미지 생성하기")
                    result_image = gr.Image(
                        label="생성된 이미지",
                        type="pil"
                    )

        def clear_voice_input():
            """음성 입력 초기화"""
            return None

        def analyze_voice(audio_path, state):
    """음성 분석 개선"""
    if audio_path is None:
        return state, "음성을 먼저 녹음해주세요.", "", "", ""
    
    try:
        # 오디오 로드
        y, sr = librosa.load(audio_path, sr=16000)
        
        # 1. 음향학적 특성 분석
        acoustic_features = {
            "energy": float(np.mean(librosa.feature.rms(y=y))),
            "tempo": float(librosa.beat.tempo(y)[0]),
            "pitch": float(np.mean(librosa.feature.zero_crossing_rate(y))),
            "volume": float(np.mean(np.abs(y)))
        }

        # 음성의 특성에 따른 감정 매핑
        voice_emotion = map_acoustic_to_emotion(acoustic_features)
        
        # 2. 음성-텍스트 변환
        transcription = speech_recognizer(y)
        text = transcription["text"]
        
        # 3. 텍스트 감정 분석
        text_sentiment = korean_sentiment(text)[0]
        
        # 결과 포맷팅
        voice_result = f"음성 감정: {voice_emotion['emotion']} (강도: {voice_emotion['intensity']:.2f})"
        text_result = f"텍스트 감정: {text_sentiment['label']} ({text_sentiment['score']:.2f})"
        
        # 프롬프트 생성
        prompt = generate_detailed_prompt(text, voice_emotion, text_sentiment, acoustic_features)
        
        return (
            state,
            text,
            voice_result,
            text_result,
            prompt
        )
    except Exception as e:
        return state, f"오류 발생: {str(e)}", "", "", ""

def map_acoustic_to_emotion(features):
    """음향학적 특성을 감정으로 매핑"""
    # 에너지 기반 감정 강도
    intensity = features["energy"] * 100
    
    # 음성 특성에 따른 감정 분류
    if features["energy"] > 0.7:
        if features["tempo"] > 120:
            emotion = "기쁨/흥분"
        else:
            emotion = "분노/강조"
    elif features["pitch"] > 0.6:
        emotion = "놀람/관심"
    elif features["energy"] < 0.3:
        emotion = "슬픔/우울"
    else:
        emotion = "평온/중립"
    
    return {
        "emotion": emotion,
        "intensity": intensity,
        "features": features
    }

def generate_detailed_prompt(text, voice_emotion, text_sentiment, acoustic_features):
    """더 상세한 프롬프트 생성"""
    # 감정별 색상 매핑
    emotion_colors = {
        "기쁨/흥분": "밝은 노랑과 주황색",
        "분노/강조": "강렬한 빨강과 검정",
        "놀람/관심": "선명한 파랑과 보라",
        "슬픔/우울": "어두운 파랑과 회색",
        "평온/중립": "부드러운 초록과 베이지"
    }
    
    # 음성 특성에 따른 시각적 요소
    visual_elements = {
        "high_energy": "역동적인 붓질과 강한 대비",
        "medium_energy": "균형잡힌 구도와 자연스러운 흐름",
        "low_energy": "부드러운 그라데이션과 차분한 톤"
    }
    
    # 에너지 레벨 결정
    energy_level = "medium_energy"
    if acoustic_features["energy"] > 0.7:
        energy_level = "high_energy"
    elif acoustic_features["energy"] < 0.3:
        energy_level = "low_energy"
    
    # 프롬프트 구성
    prompt = f"한국 전통 민화 스타일의 추상화, {emotion_colors.get(voice_emotion['emotion'], '자연스러운 색상')} 기반. "
    prompt += f"{visual_elements[energy_level]}를 통해 감정의 깊이를 표현. "
    prompt += f"음성의 {voice_emotion['emotion']} 감정과 텍스트의 {text_sentiment['label']} 감정이 조화를 이루며, "
    prompt += f"목소리의 특징(강도:{voice_emotion['intensity']:.1f})을 화면의 동적인 요소로 표현. "
    prompt += f"발화 내용 '{text}'의 의미를 은유적 이미지로 담아내기."
    
    return prompt

        def save_reflection(text, state):
            """감상 저장"""
            if not text.strip():
                return state, state["reflections"]
            
            current_time = datetime.now().strftime("%H:%M:%S")
            sentiment = text_analyzer(text)[0]
            new_reflection = [current_time, text, f"{sentiment['label']} ({sentiment['score']:.2f})"]
            
            if "reflections" not in state:
                state["reflections"] = []
                
            state["reflections"].append(new_reflection)
            return state, state["reflections"]

        # 이벤트 연결
        start_btn.click(
            fn=lambda name: (f"# 환영합니다, {name}님의 디지털 굿판", gr.update(selected="청신")),
            inputs=[name_input],
            outputs=[user_display, tabs]
        )

        save_btn.click(
            fn=save_reflection,
            inputs=[reflection_input, state],
            outputs=[state, reflections_display]
        )

        clear_btn.click(
            fn=clear_voice_input,
            inputs=[],
            outputs=[voice_input]
        )

        analyze_btn.click(
            fn=analyze_voice,
            inputs=[voice_input, state],
            outputs=[state, transcribed_text, voice_emotion, text_emotion, final_prompt]
        )

        generate_btn.click(
            fn=generate_image_from_prompt,
            inputs=[final_prompt],
            outputs=[result_image],
            api_name="generate_image"  # API 이름 지정
        )

        return app

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(debug=True)  # 디버그 모드 활성화