File size: 8,057 Bytes
bb63470
 
 
 
9f7512d
00ada4a
 
bb63470
00ada4a
 
 
 
 
 
 
 
 
bb63470
 
00ada4a
 
 
 
bb63470
00ada4a
 
 
 
 
 
 
 
 
 
9f7512d
00ada4a
 
 
 
 
9f7512d
00ada4a
 
 
 
9f7512d
00ada4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f7512d
00ada4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f7512d
00ada4a
 
 
 
 
 
 
9f7512d
00ada4a
 
 
 
 
 
9f7512d
00ada4a
 
 
 
 
9f7512d
00ada4a
 
 
9f7512d
00ada4a
 
 
9f7512d
00ada4a
 
 
 
 
 
9f7512d
00ada4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f7512d
00ada4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f7512d
00ada4a
 
 
 
 
 
 
 
 
9f7512d
00ada4a
 
 
 
 
 
 
 
9f7512d
00ada4a
bb63470
00ada4a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import numpy as np
import librosa
from transformers import pipeline
import json
import time
from datetime import datetime

# 전역 상수
STAGES = {
    "INTRO": "입장",
    "CLEANSING": "청신",
    "PRAYER": "기원",
    "SHARING": "송신"
}

# AI 모델 초기화
speech_recognizer = pipeline("automatic-speech-recognition", 
                           model="kresnik/wav2vec2-large-xlsr-korean")
emotion_classifier = pipeline("audio-classification", 
                            model="MIT/ast-finetuned-speech-commands-v2")
text_analyzer = pipeline("sentiment-analysis", 
                        model="nlptown/bert-base-multilingual-uncased-sentiment")

class DigitalGutApp:
    def __init__(self):
        self.current_stage = "INTRO"
        self.user_name = ""
        self.session_data = {
            "reflections": [],
            "voice_analysis": None,
            "generated_prompts": [],
            "current_location": "온천장역"
        }

    def create_interface(self):
        with gr.Blocks(theme=gr.themes.Soft()) as app:
            # 상태 관리
            state = gr.State(self.session_data)
            current_stage = gr.State(self.current_stage)
            
            # 헤더
            with gr.Column(visible=True) as header:
                gr.Markdown("# 디지털 굿판")
                stage_indicator = gr.Markdown(self._get_stage_description())
            
            # 메인 컨텐츠 영역
            with gr.Column() as main_content:
                # 1. 입장 화면
                with gr.Column(visible=lambda: self.current_stage == "INTRO") as intro_screen:
                    gr.Markdown("""
                    # 디지털 굿판에 오신 것을 환영합니다
                    온천천의 디지털 치유 공간으로 들어가보세요.
                    """)
                    name_input = gr.Textbox(label="이름을 알려주세요")
                    start_button = gr.Button("여정 시작하기")
                
                # 2. 청신 화면 (음악 감상)
                with gr.Column(visible=lambda: self.current_stage == "CLEANSING") as cleansing_screen:
                    with gr.Row():
                        # 음악 플레이어
                        audio_player = gr.Audio(
                            value="assets/main_music.mp3",
                            type="filepath",
                            label="온천천의 소리"
                        )
                        # 감상 입력
                        with gr.Column():
                            reflection_input = gr.Textbox(
                                label="현재 순간의 감상을 적어주세요",
                                lines=3
                            )
                            save_reflection = gr.Button("감상 저장")
                            reflections_display = gr.Dataframe(
                                headers=["시간", "감상", "감정"],
                                label="기록된 감상들"
                            )
                
                # 3. 기원 화면 (음성 분석)
                with gr.Column(visible=lambda: self.current_stage == "PRAYER") as prayer_screen:
                    with gr.Row():
                        # 음성 입력
                        voice_input = gr.Audio(
                            label="나누고 싶은 이야기를 들려주세요",
                            sources=["microphone"],
                            type="filepath"
                        )
                        # 분석 결과
                        analysis_output = gr.JSON(label="분석 결과")
                
                # 4. 송신 화면 (결과 공유)
                with gr.Column(visible=lambda: self.current_stage == "SHARING") as sharing_screen:
                    final_prompt = gr.Textbox(label="생성된 프롬프트")
                    gallery = gr.Gallery(label="시각화 결과")
            
            # 플로팅 메뉴
            with gr.Column(visible=True) as floating_menu:
                gr.Button("🏠", scale=1)
                gr.Button("🎵", scale=1)
                gr.Button("🎤", scale=1)
                gr.Button("🖼️", scale=1)

            # 이벤트 핸들러 정의
            def start_journey(name):
                self.user_name = name
                self.current_stage = "CLEANSING"
                return self._update_visibility()

            def save_reflection(text, state):
                if not text.strip():
                    return state, gr.update()
                
                current_time = datetime.now().strftime("%H:%M:%S")
                sentiment = text_analyzer(text)[0]
                new_reflection = [current_time, text, sentiment["label"]]
                
                state["reflections"].append(new_reflection)
                return state, state["reflections"]

            def analyze_voice(audio, state):
                if audio is None:
                    return {"error": "음성 입력이 없습니다."}
                
                result = self._comprehensive_voice_analysis(audio)
                state["voice_analysis"] = result
                return result, state

            # 이벤트 연결
            start_button.click(
                fn=start_journey,
                inputs=[name_input],
                outputs=[intro_screen, cleansing_screen, prayer_screen, sharing_screen]
            )

            save_reflection.click(
                fn=save_reflection,
                inputs=[reflection_input, state],
                outputs=[state, reflections_display]
            )

            voice_input.change(
                fn=analyze_voice,
                inputs=[voice_input, state],
                outputs=[analysis_output, state]
            )

        return app

    def _comprehensive_voice_analysis(self, audio_path):
        """종합적인 음성 분석 수행"""
        try:
            y, sr = librosa.load(audio_path)
            
            # 1. 음향학적 특성 분석
            acoustic_features = {
                "energy": float(np.mean(librosa.feature.rms(y=y))),
                "pitch_mean": float(np.mean(librosa.pitch_tuning(y))),
                "tempo": float(librosa.beat.tempo(y)[0]),
                "mfcc": librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13).mean(axis=1).tolist()
            }
            
            # 2. 음성 감정 분석
            emotion_result = emotion_classifier(y)
            
            # 3. 음성-텍스트 변환
            text_result = speech_recognizer(y)
            
            # 4. 텍스트 감정 분석
            text_sentiment = text_analyzer(text_result["text"])[0]
            
            return {
                "acoustic_analysis": acoustic_features,
                "emotion": emotion_result[0],
                "transcription": text_result["text"],
                "text_sentiment": text_sentiment
            }
            
        except Exception as e:
            return {"error": str(e)}

    def _get_stage_description(self):
        """현재 단계에 대한 설명 반환"""
        descriptions = {
            "INTRO": "디지털 굿판에 오신 것을 환영합니다",
            "CLEANSING": "청신 - 소리로 정화하기",
            "PRAYER": "기원 - 목소리로 전하기",
            "SHARING": "송신 - 함께 나누기"
        }
        return descriptions.get(self.current_stage, "")

    def _update_visibility(self):
        """현재 단계에 따른 화면 가시성 업데이트"""
        return {
            "intro_screen": self.current_stage == "INTRO",
            "cleansing_screen": self.current_stage == "CLEANSING",
            "prayer_screen": self.current_stage == "PRAYER",
            "sharing_screen": self.current_stage == "SHARING"
        }

# 앱 실행
if __name__ == "__main__":
    app = DigitalGutApp()
    interface = app.create_interface()
    interface.launch()