File size: 8,057 Bytes
bb63470 9f7512d 00ada4a bb63470 00ada4a bb63470 00ada4a bb63470 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a 9f7512d 00ada4a bb63470 00ada4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import numpy as np
import librosa
from transformers import pipeline
import json
import time
from datetime import datetime
# 전역 상수
STAGES = {
"INTRO": "입장",
"CLEANSING": "청신",
"PRAYER": "기원",
"SHARING": "송신"
}
# AI 모델 초기화
speech_recognizer = pipeline("automatic-speech-recognition",
model="kresnik/wav2vec2-large-xlsr-korean")
emotion_classifier = pipeline("audio-classification",
model="MIT/ast-finetuned-speech-commands-v2")
text_analyzer = pipeline("sentiment-analysis",
model="nlptown/bert-base-multilingual-uncased-sentiment")
class DigitalGutApp:
def __init__(self):
self.current_stage = "INTRO"
self.user_name = ""
self.session_data = {
"reflections": [],
"voice_analysis": None,
"generated_prompts": [],
"current_location": "온천장역"
}
def create_interface(self):
with gr.Blocks(theme=gr.themes.Soft()) as app:
# 상태 관리
state = gr.State(self.session_data)
current_stage = gr.State(self.current_stage)
# 헤더
with gr.Column(visible=True) as header:
gr.Markdown("# 디지털 굿판")
stage_indicator = gr.Markdown(self._get_stage_description())
# 메인 컨텐츠 영역
with gr.Column() as main_content:
# 1. 입장 화면
with gr.Column(visible=lambda: self.current_stage == "INTRO") as intro_screen:
gr.Markdown("""
# 디지털 굿판에 오신 것을 환영합니다
온천천의 디지털 치유 공간으로 들어가보세요.
""")
name_input = gr.Textbox(label="이름을 알려주세요")
start_button = gr.Button("여정 시작하기")
# 2. 청신 화면 (음악 감상)
with gr.Column(visible=lambda: self.current_stage == "CLEANSING") as cleansing_screen:
with gr.Row():
# 음악 플레이어
audio_player = gr.Audio(
value="assets/main_music.mp3",
type="filepath",
label="온천천의 소리"
)
# 감상 입력
with gr.Column():
reflection_input = gr.Textbox(
label="현재 순간의 감상을 적어주세요",
lines=3
)
save_reflection = gr.Button("감상 저장")
reflections_display = gr.Dataframe(
headers=["시간", "감상", "감정"],
label="기록된 감상들"
)
# 3. 기원 화면 (음성 분석)
with gr.Column(visible=lambda: self.current_stage == "PRAYER") as prayer_screen:
with gr.Row():
# 음성 입력
voice_input = gr.Audio(
label="나누고 싶은 이야기를 들려주세요",
sources=["microphone"],
type="filepath"
)
# 분석 결과
analysis_output = gr.JSON(label="분석 결과")
# 4. 송신 화면 (결과 공유)
with gr.Column(visible=lambda: self.current_stage == "SHARING") as sharing_screen:
final_prompt = gr.Textbox(label="생성된 프롬프트")
gallery = gr.Gallery(label="시각화 결과")
# 플로팅 메뉴
with gr.Column(visible=True) as floating_menu:
gr.Button("🏠", scale=1)
gr.Button("🎵", scale=1)
gr.Button("🎤", scale=1)
gr.Button("🖼️", scale=1)
# 이벤트 핸들러 정의
def start_journey(name):
self.user_name = name
self.current_stage = "CLEANSING"
return self._update_visibility()
def save_reflection(text, state):
if not text.strip():
return state, gr.update()
current_time = datetime.now().strftime("%H:%M:%S")
sentiment = text_analyzer(text)[0]
new_reflection = [current_time, text, sentiment["label"]]
state["reflections"].append(new_reflection)
return state, state["reflections"]
def analyze_voice(audio, state):
if audio is None:
return {"error": "음성 입력이 없습니다."}
result = self._comprehensive_voice_analysis(audio)
state["voice_analysis"] = result
return result, state
# 이벤트 연결
start_button.click(
fn=start_journey,
inputs=[name_input],
outputs=[intro_screen, cleansing_screen, prayer_screen, sharing_screen]
)
save_reflection.click(
fn=save_reflection,
inputs=[reflection_input, state],
outputs=[state, reflections_display]
)
voice_input.change(
fn=analyze_voice,
inputs=[voice_input, state],
outputs=[analysis_output, state]
)
return app
def _comprehensive_voice_analysis(self, audio_path):
"""종합적인 음성 분석 수행"""
try:
y, sr = librosa.load(audio_path)
# 1. 음향학적 특성 분석
acoustic_features = {
"energy": float(np.mean(librosa.feature.rms(y=y))),
"pitch_mean": float(np.mean(librosa.pitch_tuning(y))),
"tempo": float(librosa.beat.tempo(y)[0]),
"mfcc": librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13).mean(axis=1).tolist()
}
# 2. 음성 감정 분석
emotion_result = emotion_classifier(y)
# 3. 음성-텍스트 변환
text_result = speech_recognizer(y)
# 4. 텍스트 감정 분석
text_sentiment = text_analyzer(text_result["text"])[0]
return {
"acoustic_analysis": acoustic_features,
"emotion": emotion_result[0],
"transcription": text_result["text"],
"text_sentiment": text_sentiment
}
except Exception as e:
return {"error": str(e)}
def _get_stage_description(self):
"""현재 단계에 대한 설명 반환"""
descriptions = {
"INTRO": "디지털 굿판에 오신 것을 환영합니다",
"CLEANSING": "청신 - 소리로 정화하기",
"PRAYER": "기원 - 목소리로 전하기",
"SHARING": "송신 - 함께 나누기"
}
return descriptions.get(self.current_stage, "")
def _update_visibility(self):
"""현재 단계에 따른 화면 가시성 업데이트"""
return {
"intro_screen": self.current_stage == "INTRO",
"cleansing_screen": self.current_stage == "CLEANSING",
"prayer_screen": self.current_stage == "PRAYER",
"sharing_screen": self.current_stage == "SHARING"
}
# 앱 실행
if __name__ == "__main__":
app = DigitalGutApp()
interface = app.create_interface()
interface.launch() |