Spaces:
Running
Running
import gradio as gr | |
import yt_dlp | |
import os | |
from openai import OpenAI | |
client = OpenAI(api_key=os.environ['OPENAI_API_KEY']) | |
# from faster_whisper import WhisperModel | |
# tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3, or large | |
# model_name = 'base' | |
# model = WhisperModel(model_name, device="cpu", download_root="./models") | |
ydl_opts = { | |
'outtmpl': 'demo.m4a', | |
'format': 'm4a/bestaudio/best', | |
'postprocessors': [{ # Extract audio using ffmpeg | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'm4a', | |
}], | |
# 'proxy': 'socks5://192.168.2.18:20170', | |
} | |
def download_audio(url): | |
if os.path.exists('demo.m4a'): | |
os.remove('demo.m4a') | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
code = ydl.download([url]) | |
assert code == 0, "Failed to download audio" | |
def generate_text(url): | |
download_audio(url) | |
with open("demo.m4a", "rb") as f: | |
transcription = client.audio.transcriptions.create( | |
model="whisper-1", | |
file=f, | |
response_format="text" | |
) | |
return transcription.text | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
name = gr.Textbox(label="Enter your youtube url") | |
button = gr.Button("Download") | |
with gr.Column(): | |
output = gr.TextArea(label="Output") | |
button.click( | |
generate_text, | |
inputs=[name], | |
outputs=[output], | |
) | |
demo.launch() |