Spaces:
Sleeping
Sleeping
File size: 1,449 Bytes
aa9cce2 07d3e9f cd864c2 aa9cce2 cd864c2 07d3e9f cd864c2 aa9cce2 07d3e9f cd864c2 07d3e9f cd864c2 07d3e9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import yt_dlp
import os
from openai import OpenAI
client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
# from faster_whisper import WhisperModel
# tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3, or large
# model_name = 'base'
# model = WhisperModel(model_name, device="cpu", download_root="./models")
ydl_opts = {
'outtmpl': 'demo.m4a',
'format': 'm4a/bestaudio/best',
'postprocessors': [{ # Extract audio using ffmpeg
'key': 'FFmpegExtractAudio',
'preferredcodec': 'm4a',
}],
# 'proxy': 'socks5://192.168.2.18:20170',
}
def download_audio(url):
if os.path.exists('demo.m4a'):
os.remove('demo.m4a')
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
code = ydl.download([url])
assert code == 0, "Failed to download audio"
def generate_text(url):
download_audio(url)
with open("demo.m4a", "rb") as f:
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=f,
response_format="text"
)
return transcription.text
with gr.Blocks() as demo:
with gr.Column():
name = gr.Textbox(label="Enter your youtube url")
button = gr.Button("Download")
with gr.Column():
output = gr.TextArea(label="Output")
button.click(
generate_text,
inputs=[name],
outputs=[output],
)
demo.launch() |