hackergeek98 commited on
Commit
455f8af
·
verified ·
1 Parent(s): 42a13ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -50
app.py CHANGED
@@ -1,13 +1,20 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
 
11
  message,
12
  history: list[tuple[str, str]],
13
  system_message,
@@ -27,7 +34,7 @@ def respond(
27
 
28
  response = ""
29
 
30
- for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
33
  stream=True,
@@ -39,51 +46,21 @@ def respond(
39
  response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
- import gradio as gr
62
- from transformers import AutoModelForCausalLM, AutoTokenizer
63
-
64
- # Load your fine-tuned GPT-2 model from Hugging Face
65
- MODEL_NAME = "hackergeek98/therapist01" # Replace w
66
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
67
- model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
68
-
69
- # Initialize conversation history
70
- conversation_history = ""
71
-
72
- # Function to generate responses
73
- def generate_response(user_input):
74
  global conversation_history
75
 
76
  # Update conversation history with user input
77
  conversation_history += f"User: {user_input}\n"
78
 
79
  # Tokenize the conversation history
80
- inputs = tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024)
81
 
82
  # Generate a response from the model
83
- outputs = model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2)
84
 
85
  # Decode the model's output
86
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
87
 
88
  # Update conversation history with the model's response
89
  conversation_history += f"Therapist: {response}\n"
@@ -91,16 +68,29 @@ def generate_response(user_input):
91
  # Return the therapist's response
92
  return response
93
 
 
 
 
 
 
 
 
 
 
94
  # Create Gradio interface
95
- interface = gr.Interface(fn=generate_response,
96
- inputs=gr.Textbox(label="Enter your message", lines=2),
97
- outputs=gr.Textbox(label="Therapist Response", lines=2),
98
- title="Virtual Therapist",
99
- description="A fine-tuned GPT-2 model acting as a virtual therapist. Chat with the model and receive responses as if you are talking to a therapist.")
 
 
 
 
 
 
 
100
 
101
  # Launch the app
102
- interface.launch()
103
-
104
-
105
  if __name__ == "__main__":
106
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ # Initialize the Zephyr-7B client
6
+ zephyr_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
7
 
8
+ # Load your fine-tuned GPT-2 model from Hugging Face
9
+ MODEL_NAME = "hackergeek98/therapist01" # Replace with your model name
10
+ gpt2_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
11
+ gpt2_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
12
 
13
+ # Initialize conversation history for GPT-2
14
+ conversation_history = ""
15
 
16
+ # Function to generate responses using Zephyr-7B
17
+ def respond_with_zephyr(
18
  message,
19
  history: list[tuple[str, str]],
20
  system_message,
 
34
 
35
  response = ""
36
 
37
+ for message in zephyr_client.chat_completion(
38
  messages,
39
  max_tokens=max_tokens,
40
  stream=True,
 
46
  response += token
47
  yield response
48
 
49
+ # Function to generate responses using GPT-2
50
+ def respond_with_gpt2(user_input):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  global conversation_history
52
 
53
  # Update conversation history with user input
54
  conversation_history += f"User: {user_input}\n"
55
 
56
  # Tokenize the conversation history
57
+ inputs = gpt2_tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024)
58
 
59
  # Generate a response from the model
60
+ outputs = gpt2_model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2)
61
 
62
  # Decode the model's output
63
+ response = gpt2_tokenizer.decode(outputs[0], skip_special_tokens=True)
64
 
65
  # Update conversation history with the model's response
66
  conversation_history += f"Therapist: {response}\n"
 
68
  # Return the therapist's response
69
  return response
70
 
71
+ # Function to handle the model selection and response generation
72
+ def respond(message, history, model_choice, system_message, max_tokens, temperature, top_p):
73
+ if model_choice == "Zephyr-7B":
74
+ return respond_with_zephyr(message, history, system_message, max_tokens, temperature, top_p)
75
+ elif model_choice == "GPT-2 Therapist":
76
+ return respond_with_gpt2(message)
77
+ else:
78
+ return "Invalid model selection."
79
+
80
  # Create Gradio interface
81
+ demo = gr.ChatInterface(
82
+ respond,
83
+ additional_inputs=[
84
+ gr.Dropdown(choices=["Zephyr-7B", "GPT-2 Therapist"], label="Model", value="Zephyr-7B"),
85
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
86
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
87
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
88
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
89
+ ],
90
+ title="Multi-Model Chat Interface",
91
+ description="Choose between Zephyr-7B and a fine-tuned GPT-2 model to chat with."
92
+ )
93
 
94
  # Launch the app
 
 
 
95
  if __name__ == "__main__":
96
+ demo.launch()