Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -58,6 +58,48 @@ demo = gr.ChatInterface( 
     | 
|
| 58 | 
         
             
                    ),
         
     | 
| 59 | 
         
             
                ],
         
     | 
| 60 | 
         
             
            )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 61 | 
         | 
| 62 | 
         | 
| 63 | 
         
             
            if __name__ == "__main__":
         
     | 
| 
         | 
|
| 58 | 
         
             
                    ),
         
     | 
| 59 | 
         
             
                ],
         
     | 
| 60 | 
         
             
            )
         
     | 
| 61 | 
         
            +
            import gradio as gr
         
     | 
| 62 | 
         
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            # Load your fine-tuned GPT-2 model from Hugging Face
         
     | 
| 65 | 
         
            +
            MODEL_NAME = "hackergeek98/therapist01"  # Replace w 
         
     | 
| 66 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
         
     | 
| 67 | 
         
            +
            model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            # Initialize conversation history
         
     | 
| 70 | 
         
            +
            conversation_history = ""
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            # Function to generate responses
         
     | 
| 73 | 
         
            +
            def generate_response(user_input):
         
     | 
| 74 | 
         
            +
                global conversation_history
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                # Update conversation history with user input
         
     | 
| 77 | 
         
            +
                conversation_history += f"User: {user_input}\n"
         
     | 
| 78 | 
         
            +
                
         
     | 
| 79 | 
         
            +
                # Tokenize the conversation history
         
     | 
| 80 | 
         
            +
                inputs = tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024)
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                # Generate a response from the model
         
     | 
| 83 | 
         
            +
                outputs = model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2)
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                # Decode the model's output
         
     | 
| 86 | 
         
            +
                response = tokenizer.decode(outputs[0], skip_special_tokens=True)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                # Update conversation history with the model's response
         
     | 
| 89 | 
         
            +
                conversation_history += f"Therapist: {response}\n"
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                # Return the therapist's response
         
     | 
| 92 | 
         
            +
                return response
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            # Create Gradio interface
         
     | 
| 95 | 
         
            +
            interface = gr.Interface(fn=generate_response,
         
     | 
| 96 | 
         
            +
                                     inputs=gr.Textbox(label="Enter your message", lines=2),
         
     | 
| 97 | 
         
            +
                                     outputs=gr.Textbox(label="Therapist Response", lines=2),
         
     | 
| 98 | 
         
            +
                                     title="Virtual Therapist",
         
     | 
| 99 | 
         
            +
                                     description="A fine-tuned GPT-2 model acting as a virtual therapist. Chat with the model and receive responses as if you are talking to a therapist.")
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            # Launch the app
         
     | 
| 102 | 
         
            +
            interface.launch()
         
     | 
| 103 | 
         | 
| 104 | 
         | 
| 105 | 
         
             
            if __name__ == "__main__":
         
     |