Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Initialize the Zephyr-7B client | |
zephyr_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Load your fine-tuned GPT-2 model from Hugging Face | |
MODEL_NAME = "hackergeek98/therapist01" # Replace with your model name | |
gpt2_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
gpt2_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
# Initialize conversation history for GPT-2 | |
conversation_history = "" | |
# Function to generate responses using Zephyr-7B | |
def respond_with_zephyr( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in zephyr_client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Function to generate responses using GPT-2 | |
def respond_with_gpt2(user_input): | |
global conversation_history | |
# Update conversation history with user input | |
conversation_history += f"User: {user_input}\n" | |
# Tokenize the conversation history | |
inputs = gpt2_tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024) | |
# Generate a response from the model | |
outputs = gpt2_model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2) | |
# Decode the model's output | |
response = gpt2_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Update conversation history with the model's response | |
conversation_history += f"Therapist: {response}\n" | |
# Return the therapist's response | |
return response | |
# Function to handle the model selection and response generation | |
def respond(message, history, model_choice, system_message, max_tokens, temperature, top_p): | |
if model_choice == "Zephyr-7B": | |
return respond_with_zephyr(message, history, system_message, max_tokens, temperature, top_p) | |
elif model_choice == "GPT-2 Therapist": | |
return respond_with_gpt2(message) | |
else: | |
return "Invalid model selection." | |
# Create Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown(choices=["Zephyr-7B", "GPT-2 Therapist"], label="Model", value="Zephyr-7B"), | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
title="Multi-Model Chat Interface", | |
description="Choose between Zephyr-7B and a fine-tuned GPT-2 model to chat with." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() |