Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import torch
|
|
|
|
|
2 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
from pydub import AudioSegment
|
4 |
import os
|
@@ -11,8 +13,14 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
11 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
|
12 |
processor = AutoProcessor.from_pretrained(model_id)
|
13 |
|
14 |
-
# Create pipeline
|
15 |
-
pipe = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Convert audio to WAV format
|
18 |
def convert_to_wav(audio_path):
|
@@ -34,6 +42,13 @@ def split_audio(audio_path, chunk_length_ms=30000): # Default: 30 sec per chunk
|
|
34 |
|
35 |
return chunk_paths
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Transcribe a long audio file
|
38 |
def transcribe_long_audio(audio_path):
|
39 |
wav_path = convert_to_wav(audio_path)
|
@@ -41,8 +56,7 @@ def transcribe_long_audio(audio_path):
|
|
41 |
transcription = ""
|
42 |
|
43 |
for chunk in chunk_paths:
|
44 |
-
|
45 |
-
transcription += result["text"] + "\n"
|
46 |
os.remove(chunk) # Remove processed chunk
|
47 |
|
48 |
os.remove(wav_path) # Cleanup original file
|
|
|
1 |
import torch
|
2 |
+
import torchaudio
|
3 |
+
import numpy as np
|
4 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
5 |
from pydub import AudioSegment
|
6 |
import os
|
|
|
13 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
|
14 |
processor = AutoProcessor.from_pretrained(model_id)
|
15 |
|
16 |
+
# Create ASR pipeline
|
17 |
+
pipe = pipeline(
|
18 |
+
"automatic-speech-recognition",
|
19 |
+
model=model,
|
20 |
+
tokenizer=processor.tokenizer,
|
21 |
+
feature_extractor=processor.feature_extractor,
|
22 |
+
device=0 if torch.cuda.is_available() else -1,
|
23 |
+
)
|
24 |
|
25 |
# Convert audio to WAV format
|
26 |
def convert_to_wav(audio_path):
|
|
|
42 |
|
43 |
return chunk_paths
|
44 |
|
45 |
+
# **🔹 Fixed: Read Audio Before Passing to Model**
|
46 |
+
def transcribe_audio_chunk(chunk_path):
|
47 |
+
waveform, sampling_rate = torchaudio.load(chunk_path) # Load audio
|
48 |
+
waveform = waveform.numpy() # Convert to numpy
|
49 |
+
result = pipe({"raw": waveform, "sampling_rate": sampling_rate}) # Pass raw data
|
50 |
+
return result["text"]
|
51 |
+
|
52 |
# Transcribe a long audio file
|
53 |
def transcribe_long_audio(audio_path):
|
54 |
wav_path = convert_to_wav(audio_path)
|
|
|
56 |
transcription = ""
|
57 |
|
58 |
for chunk in chunk_paths:
|
59 |
+
transcription += transcribe_audio_chunk(chunk) + "\n"
|
|
|
60 |
os.remove(chunk) # Remove processed chunk
|
61 |
|
62 |
os.remove(wav_path) # Cleanup original file
|