Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,14 +12,7 @@ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
|
|
12 |
processor = AutoProcessor.from_pretrained(model_id)
|
13 |
|
14 |
# Create pipeline with correct parameter
|
15 |
-
|
16 |
-
"automatic-speech-recognition",
|
17 |
-
model=model,
|
18 |
-
tokenizer=processor.tokenizer,
|
19 |
-
feature_extractor=processor.feature_extractor,
|
20 |
-
device=0 if torch.cuda.is_available() else -1,
|
21 |
-
generate_kwargs={"input_features": None}, # Ensure correct input handling
|
22 |
-
)
|
23 |
|
24 |
# Convert audio to WAV format
|
25 |
def convert_to_wav(audio_path):
|
@@ -48,7 +41,7 @@ def transcribe_long_audio(audio_path):
|
|
48 |
transcription = ""
|
49 |
|
50 |
for chunk in chunk_paths:
|
51 |
-
result =
|
52 |
transcription += result["text"] + "\n"
|
53 |
os.remove(chunk) # Remove processed chunk
|
54 |
|
@@ -58,6 +51,8 @@ def transcribe_long_audio(audio_path):
|
|
58 |
|
59 |
# Gradio interface
|
60 |
def transcribe_interface(audio_file):
|
|
|
|
|
61 |
return transcribe_long_audio(audio_file)
|
62 |
|
63 |
iface = gr.Interface(
|
|
|
12 |
processor = AutoProcessor.from_pretrained(model_id)
|
13 |
|
14 |
# Create pipeline with correct parameter
|
15 |
+
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=0 if torch.cuda.is_available() else -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Convert audio to WAV format
|
18 |
def convert_to_wav(audio_path):
|
|
|
41 |
transcription = ""
|
42 |
|
43 |
for chunk in chunk_paths:
|
44 |
+
result = pipe({"path": chunk}) # FIXED: Pass chunk as dict
|
45 |
transcription += result["text"] + "\n"
|
46 |
os.remove(chunk) # Remove processed chunk
|
47 |
|
|
|
51 |
|
52 |
# Gradio interface
|
53 |
def transcribe_interface(audio_file):
|
54 |
+
if not audio_file:
|
55 |
+
return "No file uploaded."
|
56 |
return transcribe_long_audio(audio_file)
|
57 |
|
58 |
iface = gr.Interface(
|