Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
| import torch | |
| import librosa | |
| # Load the fine-tuned Whisper model and processor | |
| model_name = "hackergeek98/tinyyyy_whisper" | |
| processor = WhisperProcessor.from_pretrained(model_name) | |
| model = WhisperForConditionalGeneration.from_pretrained(model_name) | |
| # Move model to GPU if available | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| # Define the ASR function | |
| def transcribe_audio(audio_file): | |
| # Load audio file using librosa (supports multiple formats) | |
| audio_data, sampling_rate = librosa.load(audio_file, sr=16000) # Resample to 16kHz | |
| # Preprocess the audio | |
| inputs = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device) | |
| # Generate transcription | |
| with torch.no_grad(): | |
| predicted_ids = model.generate(inputs) | |
| # Decode the transcription | |
| transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
| return transcription | |
| # Create the Gradio interface | |
| interface = gr.Interface( | |
| fn=transcribe_audio, # Function to call | |
| inputs=gr.Audio(type="filepath"), # Input: Upload audio file (any format) | |
| outputs=gr.Textbox(label="Transcription"), # Output: Display transcription | |
| title="Whisper ASR: Tinyyyy Model", | |
| description="Upload an audio file (e.g., .wav, .mp3, .ogg), and the fine-tuned Whisper model will transcribe it.", | |
| ) | |
| # Launch the app | |
| interface.launch() |