Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
|
|
4 |
|
5 |
# Load the fine-tuned Whisper model and processor
|
6 |
model_name = "hackergeek98/tinyyyy_whisper"
|
@@ -12,9 +13,9 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
12 |
model.to(device)
|
13 |
|
14 |
# Define the ASR function
|
15 |
-
def transcribe_audio(
|
16 |
-
# Load audio file
|
17 |
-
|
18 |
|
19 |
# Preprocess the audio
|
20 |
inputs = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device)
|
@@ -30,10 +31,10 @@ def transcribe_audio(audio):
|
|
30 |
# Create the Gradio interface
|
31 |
interface = gr.Interface(
|
32 |
fn=transcribe_audio, # Function to call
|
33 |
-
inputs=gr.Audio(type="
|
34 |
outputs=gr.Textbox(label="Transcription"), # Output: Display transcription
|
35 |
title="Whisper ASR: Tinyyyy Model",
|
36 |
-
description="Upload an audio file, and the fine-tuned Whisper model will transcribe it.",
|
37 |
)
|
38 |
|
39 |
# Launch the app
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
+
import librosa
|
5 |
|
6 |
# Load the fine-tuned Whisper model and processor
|
7 |
model_name = "hackergeek98/tinyyyy_whisper"
|
|
|
13 |
model.to(device)
|
14 |
|
15 |
# Define the ASR function
|
16 |
+
def transcribe_audio(audio_file):
|
17 |
+
# Load audio file using librosa (supports multiple formats)
|
18 |
+
audio_data, sampling_rate = librosa.load(audio_file, sr=16000) # Resample to 16kHz
|
19 |
|
20 |
# Preprocess the audio
|
21 |
inputs = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device)
|
|
|
31 |
# Create the Gradio interface
|
32 |
interface = gr.Interface(
|
33 |
fn=transcribe_audio, # Function to call
|
34 |
+
inputs=gr.Audio(type="filepath"), # Input: Upload audio file (any format)
|
35 |
outputs=gr.Textbox(label="Transcription"), # Output: Display transcription
|
36 |
title="Whisper ASR: Tinyyyy Model",
|
37 |
+
description="Upload an audio file (e.g., .wav, .mp3, .ogg), and the fine-tuned Whisper model will transcribe it.",
|
38 |
)
|
39 |
|
40 |
# Launch the app
|