Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer | |
from peft import get_peft_model, LoraConfig, TaskType | |
from datasets import load_dataset | |
# β Check if a GPU is available, otherwise use CPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# β Function to start training | |
def train_model(dataset_url, model_url, epochs): | |
try: | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_url) | |
model = AutoModelForCausalLM.from_pretrained(model_url).to(device) | |
# β Apply LoRA (Reduces trainable parameters) | |
lora_config = LoraConfig( | |
task_type=TaskType.CAUSAL_LM, | |
r=8, | |
lora_alpha=32, | |
lora_dropout=0.1, | |
target_modules=["q_proj", "v_proj"] | |
) | |
model = get_peft_model(model, lora_config) | |
model.to(device) | |
# β Load dataset | |
dataset = load_dataset(dataset_url) | |
# β Tokenization function | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=256) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
train_dataset = tokenized_datasets["train"] | |
# β Training Arguments (Optimized for CPU) | |
training_args = TrainingArguments( | |
output_dir="./deepseek_lora_cpu", | |
evaluation_strategy="epoch", | |
learning_rate=5e-4, | |
per_device_train_batch_size=1, # Keeps memory low | |
per_device_eval_batch_size=1, | |
num_train_epochs=int(epochs), | |
save_strategy="epoch", | |
save_total_limit=2, | |
logging_dir="./logs", | |
logging_steps=10, | |
fp16=False, # Disable FP16 for CPU | |
gradient_checkpointing=True, # Saves memory | |
optim="adamw_torch", | |
report_to="none" | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset | |
) | |
# β Start Training | |
trainer.train() | |
# β Save the Fine-Tuned Model | |
model.save_pretrained("./deepseek_lora_finetuned") | |
tokenizer.save_pretrained("./deepseek_lora_finetuned") | |
return "β Training Completed! Model saved successfully." | |
except Exception as e: | |
return f"β Error: {str(e)}" | |
# β Gradio UI | |
with gr.Blocks() as app: | |
gr.Markdown("# π AutoTrain DeepSeek R1 (CPU)") | |
dataset_url = gr.Textbox(label="Dataset URL (Hugging Face)", placeholder="e.g. samsum") | |
model_url = gr.Textbox(label="Model URL (Hugging Face)", placeholder="e.g. deepseek-ai/deepseek-r1") | |
epochs = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="Number of Training Epochs") | |
train_button = gr.Button("Start Training") | |
output_text = gr.Textbox(label="Training Output") | |
train_button.click(train_model, inputs=[dataset_url, model_url, epochs], outputs=output_text) | |
# β Launch the app | |
app.launch(server_name="0.0.0.0", server_port=7860) |