Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import gradio as gr
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
4 |
from peft import get_peft_model, LoraConfig, TaskType
|
5 |
from datasets import load_dataset
|
6 |
-
from bitsandbytes import BitsAndBytesConfig
|
7 |
|
8 |
# β
Check if a GPU is available, otherwise use CPU
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -11,24 +10,11 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
11 |
# β
Function to start training
|
12 |
def train_model(dataset_url, model_url, epochs):
|
13 |
try:
|
14 |
-
# Load
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_url)
|
|
|
16 |
|
17 |
-
# β
|
18 |
-
bnb_config = BitsAndBytesConfig(
|
19 |
-
load_in_4bit=True if device == "cuda" else False,
|
20 |
-
bnb_4bit_quant_type="nf4",
|
21 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
22 |
-
bnb_4bit_use_double_quant=True
|
23 |
-
)
|
24 |
-
|
25 |
-
model = AutoModelForCausalLM.from_pretrained(
|
26 |
-
model_url,
|
27 |
-
quantization_config=bnb_config if device == "cuda" else None,
|
28 |
-
device_map=device
|
29 |
-
)
|
30 |
-
|
31 |
-
# β
Apply LoRA for efficient training
|
32 |
lora_config = LoraConfig(
|
33 |
task_type=TaskType.CAUSAL_LM,
|
34 |
r=8,
|
@@ -50,20 +36,20 @@ def train_model(dataset_url, model_url, epochs):
|
|
50 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
51 |
train_dataset = tokenized_datasets["train"]
|
52 |
|
53 |
-
# β
Training Arguments
|
54 |
training_args = TrainingArguments(
|
55 |
output_dir="./deepseek_lora_cpu",
|
56 |
evaluation_strategy="epoch",
|
57 |
learning_rate=5e-4,
|
58 |
-
per_device_train_batch_size=1,
|
59 |
per_device_eval_batch_size=1,
|
60 |
num_train_epochs=int(epochs),
|
61 |
save_strategy="epoch",
|
62 |
save_total_limit=2,
|
63 |
logging_dir="./logs",
|
64 |
logging_steps=10,
|
65 |
-
fp16=False,
|
66 |
-
gradient_checkpointing=True,
|
67 |
optim="adamw_torch",
|
68 |
report_to="none"
|
69 |
)
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
4 |
from peft import get_peft_model, LoraConfig, TaskType
|
5 |
from datasets import load_dataset
|
|
|
6 |
|
7 |
# β
Check if a GPU is available, otherwise use CPU
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
10 |
# β
Function to start training
|
11 |
def train_model(dataset_url, model_url, epochs):
|
12 |
try:
|
13 |
+
# Load tokenizer and model
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_url)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_url).to(device)
|
16 |
|
17 |
+
# β
Apply LoRA (Reduces trainable parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
lora_config = LoraConfig(
|
19 |
task_type=TaskType.CAUSAL_LM,
|
20 |
r=8,
|
|
|
36 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
37 |
train_dataset = tokenized_datasets["train"]
|
38 |
|
39 |
+
# β
Training Arguments (Optimized for CPU)
|
40 |
training_args = TrainingArguments(
|
41 |
output_dir="./deepseek_lora_cpu",
|
42 |
evaluation_strategy="epoch",
|
43 |
learning_rate=5e-4,
|
44 |
+
per_device_train_batch_size=1, # Keeps memory low
|
45 |
per_device_eval_batch_size=1,
|
46 |
num_train_epochs=int(epochs),
|
47 |
save_strategy="epoch",
|
48 |
save_total_limit=2,
|
49 |
logging_dir="./logs",
|
50 |
logging_steps=10,
|
51 |
+
fp16=False, # Disable FP16 for CPU
|
52 |
+
gradient_checkpointing=True, # Saves memory
|
53 |
optim="adamw_torch",
|
54 |
report_to="none"
|
55 |
)
|