Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import gradio as gr
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
| 4 |
from peft import get_peft_model, LoraConfig, TaskType
|
| 5 |
from datasets import load_dataset
|
| 6 |
-
from bitsandbytes import BitsAndBytesConfig
|
| 7 |
|
| 8 |
# β
Check if a GPU is available, otherwise use CPU
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -11,24 +10,11 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 11 |
# β
Function to start training
|
| 12 |
def train_model(dataset_url, model_url, epochs):
|
| 13 |
try:
|
| 14 |
-
# Load
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(model_url)
|
|
|
|
| 16 |
|
| 17 |
-
# β
|
| 18 |
-
bnb_config = BitsAndBytesConfig(
|
| 19 |
-
load_in_4bit=True if device == "cuda" else False,
|
| 20 |
-
bnb_4bit_quant_type="nf4",
|
| 21 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 22 |
-
bnb_4bit_use_double_quant=True
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
-
model_url,
|
| 27 |
-
quantization_config=bnb_config if device == "cuda" else None,
|
| 28 |
-
device_map=device
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
# β
Apply LoRA for efficient training
|
| 32 |
lora_config = LoraConfig(
|
| 33 |
task_type=TaskType.CAUSAL_LM,
|
| 34 |
r=8,
|
|
@@ -50,20 +36,20 @@ def train_model(dataset_url, model_url, epochs):
|
|
| 50 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 51 |
train_dataset = tokenized_datasets["train"]
|
| 52 |
|
| 53 |
-
# β
Training Arguments
|
| 54 |
training_args = TrainingArguments(
|
| 55 |
output_dir="./deepseek_lora_cpu",
|
| 56 |
evaluation_strategy="epoch",
|
| 57 |
learning_rate=5e-4,
|
| 58 |
-
per_device_train_batch_size=1,
|
| 59 |
per_device_eval_batch_size=1,
|
| 60 |
num_train_epochs=int(epochs),
|
| 61 |
save_strategy="epoch",
|
| 62 |
save_total_limit=2,
|
| 63 |
logging_dir="./logs",
|
| 64 |
logging_steps=10,
|
| 65 |
-
fp16=False,
|
| 66 |
-
gradient_checkpointing=True,
|
| 67 |
optim="adamw_torch",
|
| 68 |
report_to="none"
|
| 69 |
)
|
|
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
| 4 |
from peft import get_peft_model, LoraConfig, TaskType
|
| 5 |
from datasets import load_dataset
|
|
|
|
| 6 |
|
| 7 |
# β
Check if a GPU is available, otherwise use CPU
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 10 |
# β
Function to start training
|
| 11 |
def train_model(dataset_url, model_url, epochs):
|
| 12 |
try:
|
| 13 |
+
# Load tokenizer and model
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(model_url)
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(model_url).to(device)
|
| 16 |
|
| 17 |
+
# β
Apply LoRA (Reduces trainable parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
lora_config = LoraConfig(
|
| 19 |
task_type=TaskType.CAUSAL_LM,
|
| 20 |
r=8,
|
|
|
|
| 36 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 37 |
train_dataset = tokenized_datasets["train"]
|
| 38 |
|
| 39 |
+
# β
Training Arguments (Optimized for CPU)
|
| 40 |
training_args = TrainingArguments(
|
| 41 |
output_dir="./deepseek_lora_cpu",
|
| 42 |
evaluation_strategy="epoch",
|
| 43 |
learning_rate=5e-4,
|
| 44 |
+
per_device_train_batch_size=1, # Keeps memory low
|
| 45 |
per_device_eval_batch_size=1,
|
| 46 |
num_train_epochs=int(epochs),
|
| 47 |
save_strategy="epoch",
|
| 48 |
save_total_limit=2,
|
| 49 |
logging_dir="./logs",
|
| 50 |
logging_steps=10,
|
| 51 |
+
fp16=False, # Disable FP16 for CPU
|
| 52 |
+
gradient_checkpointing=True, # Saves memory
|
| 53 |
optim="adamw_torch",
|
| 54 |
report_to="none"
|
| 55 |
)
|