File size: 1,946 Bytes
2b35f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel

class DeepSeekLoraCPUInference:
    def __init__(self, base_model="deepseek-ai/deepseek-r1", fine_tuned_model="./deepseek_lora_finetuned"):
        self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model)
        
        # Load model in 4-bit on CPU (if no GPU is available)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        quant_config = BitsAndBytesConfig(
            load_in_4bit=True if device == "cuda" else False,  # Use 4-bit only if GPU is available
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True
        )

        self.model = AutoModelForCausalLM.from_pretrained(
            base_model, 
            quantization_config=quant_config if device == "cuda" else None,
            device_map=device
        )

        # Load fine-tuned LoRA model
        self.model = PeftModel.from_pretrained(self.model, fine_tuned_model)
        self.model.to(device)
        self.model.eval()

    def generate_text(self, prompt, max_length=200):
        """Generates text efficiently using CPU or GPU."""
        device = "cuda" if torch.cuda.is_available() else "cpu"
        inputs = self.tokenizer(prompt, return_tensors="pt").to(device)
        
        with torch.no_grad():
            output = self.model.generate(
                **inputs, 
                max_length=max_length, 
                temperature=0.7, 
                top_p=0.9, 
                repetition_penalty=1.1
            )

        return self.tokenizer.decode(output[0], skip_special_tokens=True)

if __name__ == "__main__":
    model = DeepSeekLoraCPUInference()
    
    prompt = "The implications of AI in the next decade are"
    generated_text = model.generate_text(prompt)

    print("\nGenerated Text:\n", generated_text)