Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
3 |
+
from peft import PeftModel
|
4 |
+
|
5 |
+
class DeepSeekLoraCPUInference:
|
6 |
+
def __init__(self, base_model="deepseek-ai/deepseek-r1", fine_tuned_model="./deepseek_lora_finetuned"):
|
7 |
+
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model)
|
8 |
+
|
9 |
+
# Load model in 4-bit on CPU (if no GPU is available)
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
quant_config = BitsAndBytesConfig(
|
12 |
+
load_in_4bit=True if device == "cuda" else False, # Use 4-bit only if GPU is available
|
13 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
14 |
+
bnb_4bit_quant_type="nf4",
|
15 |
+
bnb_4bit_use_double_quant=True
|
16 |
+
)
|
17 |
+
|
18 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
base_model,
|
20 |
+
quantization_config=quant_config if device == "cuda" else None,
|
21 |
+
device_map=device
|
22 |
+
)
|
23 |
+
|
24 |
+
# Load fine-tuned LoRA model
|
25 |
+
self.model = PeftModel.from_pretrained(self.model, fine_tuned_model)
|
26 |
+
self.model.to(device)
|
27 |
+
self.model.eval()
|
28 |
+
|
29 |
+
def generate_text(self, prompt, max_length=200):
|
30 |
+
"""Generates text efficiently using CPU or GPU."""
|
31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(device)
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
output = self.model.generate(
|
36 |
+
**inputs,
|
37 |
+
max_length=max_length,
|
38 |
+
temperature=0.7,
|
39 |
+
top_p=0.9,
|
40 |
+
repetition_penalty=1.1
|
41 |
+
)
|
42 |
+
|
43 |
+
return self.tokenizer.decode(output[0], skip_special_tokens=True)
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
model = DeepSeekLoraCPUInference()
|
47 |
+
|
48 |
+
prompt = "The implications of AI in the next decade are"
|
49 |
+
generated_text = model.generate_text(prompt)
|
50 |
+
|
51 |
+
print("\nGenerated Text:\n", generated_text)
|