Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load model with CPU optimizations | |
model = AutoModelForCausalLM.from_pretrained( | |
"hackergeek/gemma-finetuned", | |
torch_dtype=torch.float32, | |
device_map="cpu", | |
low_cpu_mem_usage=True # Now works with Accelerate installed | |
) | |
tokenizer = AutoTokenizer.from_pretrained("hackergeek/gemma-finetuned") | |
tokenizer.pad_token = tokenizer.eos_token | |
def format_prompt(message, history): | |
"""Format the prompt with conversation history""" | |
system_prompt = "You are a knowledgeable space expert assistant. Answer questions about astronomy, space exploration, and related topics in a clear and engaging manner." | |
prompt = f"<system>{system_prompt}</system>\n" | |
for user_msg, bot_msg in history: | |
prompt += f"<user>{user_msg}</user>\n<assistant>{bot_msg}</assistant>\n" | |
prompt += f"<user>{message}</user>\n<assistant>" | |
return prompt | |
def respond(message, history): | |
full_prompt = format_prompt(message, history) | |
inputs = tokenizer(full_prompt, return_tensors="pt", add_special_tokens=False) | |
outputs = model.generate( | |
inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
max_new_tokens=256, # Reduced for CPU safety | |
temperature=0.7, | |
top_p=0.85, | |
repetition_penalty=1.1, | |
do_sample=True | |
) | |
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) | |
return response | |
# ... (rest of the Gradio interface code remains the same) |