Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,18 +2,16 @@ import gradio as gr
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
-
# Load model
|
6 |
model = AutoModelForCausalLM.from_pretrained(
|
7 |
"hackergeek/gemma-finetuned",
|
8 |
-
torch_dtype=torch.float32,
|
9 |
-
device_map="cpu"
|
|
|
10 |
)
|
11 |
tokenizer = AutoTokenizer.from_pretrained("hackergeek/gemma-finetuned")
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
13 |
|
14 |
-
# Explicitly move model to CPU (redundant but safe)
|
15 |
-
model.to("cpu")
|
16 |
-
|
17 |
def format_prompt(message, history):
|
18 |
"""Format the prompt with conversation history"""
|
19 |
system_prompt = "You are a knowledgeable space expert assistant. Answer questions about astronomy, space exploration, and related topics in a clear and engaging manner."
|
@@ -26,50 +24,20 @@ def format_prompt(message, history):
|
|
26 |
return prompt
|
27 |
|
28 |
def respond(message, history):
|
29 |
-
# Format the prompt with conversation history
|
30 |
full_prompt = format_prompt(message, history)
|
31 |
-
|
32 |
-
# Tokenize input (keep on CPU)
|
33 |
inputs = tokenizer(full_prompt, return_tensors="pt", add_special_tokens=False)
|
34 |
|
35 |
-
# Generate response with CPU-friendly parameters
|
36 |
outputs = model.generate(
|
37 |
-
|
38 |
attention_mask=inputs.attention_mask,
|
39 |
-
max_new_tokens=
|
40 |
temperature=0.7,
|
41 |
top_p=0.85,
|
42 |
repetition_penalty=1.1,
|
43 |
-
do_sample=True
|
44 |
-
no_repeat_ngram_size=2 # Added to reduce repetition
|
45 |
)
|
46 |
|
47 |
-
# Decode response
|
48 |
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
49 |
-
|
50 |
return response
|
51 |
|
52 |
-
#
|
53 |
-
space_css = """
|
54 |
-
.gradio-container { background: #000000; color: #ffffff; }
|
55 |
-
.chatbot { background: #0a0a2a !important; }
|
56 |
-
"""
|
57 |
-
|
58 |
-
with gr.Blocks(css=space_css) as demo:
|
59 |
-
gr.Markdown("# 🚀 CPU Space Chatbot 🌌")
|
60 |
-
gr.Markdown("Note: Responses may be slower due to CPU processing")
|
61 |
-
|
62 |
-
chatbot = gr.ChatInterface(
|
63 |
-
respond,
|
64 |
-
examples=[
|
65 |
-
"What is a neutron star?",
|
66 |
-
"Explain the Big Bang theory",
|
67 |
-
"How do rockets work?",
|
68 |
-
"What's the temperature on Venus?"
|
69 |
-
],
|
70 |
-
clear_btn="Clear",
|
71 |
-
)
|
72 |
-
chatbot.chatbot.height = 500
|
73 |
-
|
74 |
-
if __name__ == "__main__":
|
75 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
+
# Load model with CPU optimizations
|
6 |
model = AutoModelForCausalLM.from_pretrained(
|
7 |
"hackergeek/gemma-finetuned",
|
8 |
+
torch_dtype=torch.float32,
|
9 |
+
device_map="cpu",
|
10 |
+
low_cpu_mem_usage=True # Now works with Accelerate installed
|
11 |
)
|
12 |
tokenizer = AutoTokenizer.from_pretrained("hackergeek/gemma-finetuned")
|
13 |
tokenizer.pad_token = tokenizer.eos_token
|
14 |
|
|
|
|
|
|
|
15 |
def format_prompt(message, history):
|
16 |
"""Format the prompt with conversation history"""
|
17 |
system_prompt = "You are a knowledgeable space expert assistant. Answer questions about astronomy, space exploration, and related topics in a clear and engaging manner."
|
|
|
24 |
return prompt
|
25 |
|
26 |
def respond(message, history):
|
|
|
27 |
full_prompt = format_prompt(message, history)
|
|
|
|
|
28 |
inputs = tokenizer(full_prompt, return_tensors="pt", add_special_tokens=False)
|
29 |
|
|
|
30 |
outputs = model.generate(
|
31 |
+
inputs.input_ids,
|
32 |
attention_mask=inputs.attention_mask,
|
33 |
+
max_new_tokens=256, # Reduced for CPU safety
|
34 |
temperature=0.7,
|
35 |
top_p=0.85,
|
36 |
repetition_penalty=1.1,
|
37 |
+
do_sample=True
|
|
|
38 |
)
|
39 |
|
|
|
40 |
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
|
|
41 |
return response
|
42 |
|
43 |
+
# ... (rest of the Gradio interface code remains the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|