File size: 5,451 Bytes
c60c4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
import requests
import json
import os
import speech_recognition as sr
import pandas as pd
import altair as alt
from PIL import Image
from io import BytesIO

# Function to perform Google Search
def google_search(api_key, cse_id, query, num_results=10):
    url = "https://www.googleapis.com/customsearch/v1"
    params = {'key': api_key, 'cx': cse_id, 'q': query, 'num': num_results}
    response = requests.get(url, params=params)
    return response.json()

# Initialize search history and data storage for analytics
if 'search_history' not in st.session_state:
    st.session_state.search_history = []
if 'search_data' not in st.session_state:
    st.session_state.search_data = pd.DataFrame(columns=["Query", "Source", "Timestamp"])

def main():
    st.title("Enhanced Google Search Application")

    # User inputs for API key, CSE ID, and search query
    api_key = "AIzaSyBvnTpjwspsYBMlHN4nMEvybEmZL8mwAQ4"
    cse_id = "464947c4e602c4ee8"
    query = st.text_input("Enter your search query", "", key='query_input')

    # Voice search feature
    if st.button("Use Voice Search"):
        recognizer = sr.Recognizer()
        with sr.Microphone() as source:
            st.write("Listening...")
            audio = recognizer.listen(source)
            try:
                query = recognizer.recognize_google(audio)
                st.write(f"You said: {query}")
                if api_key and cse_id and query:
                    results = google_search(api_key, cse_id, query)
                    update_search_history(query, "Voice")
                    display_results(results)
            except sr.UnknownValueError:
                st.error("Could not understand audio.")
            except sr.RequestError:
                st.error("Could not request results from Google.")

    # Trigger search on Enter or when search button is clicked
    if st.button("Search") or st.session_state.get('query_input'):
        if api_key and cse_id and query:
            results = google_search(api_key, cse_id, query)
            update_search_history(query, "Text")
            display_results(results)
        else:
            st.error("Please enter API Key, CSE ID, and a search query.")
    
    # Button to show search history
    if st.button("Show Search History"):
        if st.session_state.search_history:
            st.write("Search History:")
            for h in st.session_state.search_history:
                st.write(h)
        else:
            st.write("No search history found.")

    # Button to clear search history
    if st.button("Clear Search History"):
        st.session_state.search_history.clear()
        st.session_state.search_data = pd.DataFrame(columns=["Query", "Source", "Timestamp"])
        st.success("Search history cleared.")

    # Interactive Analytics Dashboard
    st.subheader("Search Analytics")
    if not st.session_state.search_data.empty:
        # Chart of search counts over time
        search_trends = alt.Chart(st.session_state.search_data).mark_line().encode(
            x='Timestamp:T',
            y='count():Q',
            color='Source:N',
            tooltip=['Query:N', 'count():Q', 'Source:N']
        ).properties(width=600, height=300)
        st.altair_chart(search_trends, use_container_width=True)

        # Most popular queries
        st.write("**Top Search Queries**")
        top_queries = (
            st.session_state.search_data['Query']
            .value_counts()
            .head(5)
            .reset_index()
            .rename(columns={'index': 'Query', 'Query': 'Count'})
        )
        st.write(top_queries)

def display_results(results):
    if results and 'items' in results:
        st.session_state.results = results
        for i, item in enumerate(results['items']):
            st.write(f"**{i + 1}. {item['title']}**")
            st.write(f"[Link]({item['link']})")
            st.write(f"{item['snippet']}\n")
            
            # Check if 'pagemap' and 'cse_image' exist and if 'src' is in 'cse_image'
            if 'pagemap' in item and 'cse_image' in item['pagemap']:
                image_data = item['pagemap']['cse_image'][0]
                image_url = image_data.get('src')  # Use .get() to avoid KeyError
                
                # Try to load and display the image if 'src' exists
                if image_url:
                    try:
                        response = requests.get(image_url)
                        img = Image.open(BytesIO(response.content))
                        st.image(img, width=100)
                    except Exception as e:
                        st.write("**Image could not be loaded.**")
                else:
                    st.write("**Image source not available.**")
            else:
                st.write("No image available for this result.")
    else:
        st.write("No results found.")

def update_search_history(query, source):
    # Update search history and analytics data
    st.session_state.search_history.append(query)
    new_data = pd.DataFrame({
        "Query": [query],
        "Source": [source],
        "Timestamp": [pd.Timestamp.now()]
    })
    st.session_state.search_data = pd.concat([st.session_state.search_data, new_data], ignore_index=True)

if __name__ == "__main__":
    main()