gskdsrikrishna commited on
Commit
c60c4b6
·
verified ·
1 Parent(s): 1562cbd

Upload 11 files

Browse files
Files changed (12) hide show
  1. .gitattributes +6 -0
  2. chatgskd.png +3 -0
  3. chatgskd.py +61 -0
  4. generate.png +3 -0
  5. google.png +3 -0
  6. google.py +136 -0
  7. news.png +3 -0
  8. news.py +224 -0
  9. wikipedia.png +3 -0
  10. wikipedia.py +137 -0
  11. youtube.png +3 -0
  12. youtube.py +87 -0
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ chatgskd.png filter=lfs diff=lfs merge=lfs -text
37
+ generate.png filter=lfs diff=lfs merge=lfs -text
38
+ google.png filter=lfs diff=lfs merge=lfs -text
39
+ news.png filter=lfs diff=lfs merge=lfs -text
40
+ wikipedia.png filter=lfs diff=lfs merge=lfs -text
41
+ youtube.png filter=lfs diff=lfs merge=lfs -text
chatgskd.png ADDED

Git LFS Details

  • SHA256: 412c3c043973db433572618cfcefa68ad5b870a8712a9ecdd42602511be99955
  • Pointer size: 131 Bytes
  • Size of remote file: 421 kB
chatgskd.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ import os
4
+
5
+ # Load API Key from Hugging Face Secrets
6
+ HF_API_KEY = os.getenv("KEY")
7
+
8
+ # API URL
9
+ HF_MISTRAL_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
10
+
11
+ # Function to call Hugging Face API
12
+ def chat_with_mistral_hf(prompt):
13
+ if not HF_API_KEY:
14
+ return "Error: API key not found. Please set it in Hugging Face Secrets."
15
+
16
+ headers = {"Authorization": f"Bearer {HF_API_KEY}"}
17
+ payload = {"inputs": prompt, "parameters": {"max_length": 200, "temperature": 0.7}}
18
+
19
+ response = requests.post(HF_MISTRAL_URL, json=payload, headers=headers)
20
+
21
+ if response.status_code == 200:
22
+ return response.json()[0]["generated_text"]
23
+ else:
24
+ return f"Error: {response.json()}"
25
+
26
+ # Streamlit UI
27
+ st.set_page_config(page_title="ChatGSKD", layout="wide")
28
+
29
+ # Sidebar: Chat title rename option
30
+ st.sidebar.header("Chat Settings")
31
+ chat_title = st.sidebar.text_input("Rename Chat:", "Temporary Chat")
32
+
33
+ # Initialize chat history if not present
34
+ if "chat_history" not in st.session_state:
35
+ st.session_state.chat_history = []
36
+
37
+ # Display Chat Title
38
+ st.title(chat_title)
39
+
40
+ # Show chat history
41
+ for chat in st.session_state.chat_history:
42
+ with st.chat_message(chat["role"]):
43
+ st.write(chat["content"])
44
+
45
+ # Input box at the bottom
46
+ user_input = st.text_area("Ask AI:", height=100, key="query", label_visibility="collapsed")
47
+
48
+ # Generate response when user submits a prompt
49
+ if st.button("Generate Response"):
50
+ if user_input.strip():
51
+ with st.spinner("Generating response..."):
52
+ response = chat_with_mistral_hf(user_input)
53
+
54
+ # Store user query & response in chat history
55
+ st.session_state.chat_history.append({"role": "user", "content": user_input})
56
+ st.session_state.chat_history.append({"role": "assistant", "content": response})
57
+
58
+ # Refresh the page to show new messages
59
+ st.rerun()
60
+ else:
61
+ st.warning("Please enter a prompt before clicking Generate Response.")
generate.png ADDED

Git LFS Details

  • SHA256: dfd287fb53888d0044cc9a2c32211cdd44ecade33b8b5bbc88b480e237ea74cf
  • Pointer size: 131 Bytes
  • Size of remote file: 252 kB
google.png ADDED

Git LFS Details

  • SHA256: 51a84851a72cc1375175f522a012b3d23de62c489111738110e7983c65759c3f
  • Pointer size: 131 Bytes
  • Size of remote file: 522 kB
google.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ import json
4
+ import os
5
+ import speech_recognition as sr
6
+ import pandas as pd
7
+ import altair as alt
8
+ from PIL import Image
9
+ from io import BytesIO
10
+
11
+ # Function to perform Google Search
12
+ def google_search(api_key, cse_id, query, num_results=10):
13
+ url = "https://www.googleapis.com/customsearch/v1"
14
+ params = {'key': api_key, 'cx': cse_id, 'q': query, 'num': num_results}
15
+ response = requests.get(url, params=params)
16
+ return response.json()
17
+
18
+ # Initialize search history and data storage for analytics
19
+ if 'search_history' not in st.session_state:
20
+ st.session_state.search_history = []
21
+ if 'search_data' not in st.session_state:
22
+ st.session_state.search_data = pd.DataFrame(columns=["Query", "Source", "Timestamp"])
23
+
24
+ def main():
25
+ st.title("Enhanced Google Search Application")
26
+
27
+ # User inputs for API key, CSE ID, and search query
28
+ api_key = "AIzaSyBvnTpjwspsYBMlHN4nMEvybEmZL8mwAQ4"
29
+ cse_id = "464947c4e602c4ee8"
30
+ query = st.text_input("Enter your search query", "", key='query_input')
31
+
32
+ # Voice search feature
33
+ if st.button("Use Voice Search"):
34
+ recognizer = sr.Recognizer()
35
+ with sr.Microphone() as source:
36
+ st.write("Listening...")
37
+ audio = recognizer.listen(source)
38
+ try:
39
+ query = recognizer.recognize_google(audio)
40
+ st.write(f"You said: {query}")
41
+ if api_key and cse_id and query:
42
+ results = google_search(api_key, cse_id, query)
43
+ update_search_history(query, "Voice")
44
+ display_results(results)
45
+ except sr.UnknownValueError:
46
+ st.error("Could not understand audio.")
47
+ except sr.RequestError:
48
+ st.error("Could not request results from Google.")
49
+
50
+ # Trigger search on Enter or when search button is clicked
51
+ if st.button("Search") or st.session_state.get('query_input'):
52
+ if api_key and cse_id and query:
53
+ results = google_search(api_key, cse_id, query)
54
+ update_search_history(query, "Text")
55
+ display_results(results)
56
+ else:
57
+ st.error("Please enter API Key, CSE ID, and a search query.")
58
+
59
+ # Button to show search history
60
+ if st.button("Show Search History"):
61
+ if st.session_state.search_history:
62
+ st.write("Search History:")
63
+ for h in st.session_state.search_history:
64
+ st.write(h)
65
+ else:
66
+ st.write("No search history found.")
67
+
68
+ # Button to clear search history
69
+ if st.button("Clear Search History"):
70
+ st.session_state.search_history.clear()
71
+ st.session_state.search_data = pd.DataFrame(columns=["Query", "Source", "Timestamp"])
72
+ st.success("Search history cleared.")
73
+
74
+ # Interactive Analytics Dashboard
75
+ st.subheader("Search Analytics")
76
+ if not st.session_state.search_data.empty:
77
+ # Chart of search counts over time
78
+ search_trends = alt.Chart(st.session_state.search_data).mark_line().encode(
79
+ x='Timestamp:T',
80
+ y='count():Q',
81
+ color='Source:N',
82
+ tooltip=['Query:N', 'count():Q', 'Source:N']
83
+ ).properties(width=600, height=300)
84
+ st.altair_chart(search_trends, use_container_width=True)
85
+
86
+ # Most popular queries
87
+ st.write("**Top Search Queries**")
88
+ top_queries = (
89
+ st.session_state.search_data['Query']
90
+ .value_counts()
91
+ .head(5)
92
+ .reset_index()
93
+ .rename(columns={'index': 'Query', 'Query': 'Count'})
94
+ )
95
+ st.write(top_queries)
96
+
97
+ def display_results(results):
98
+ if results and 'items' in results:
99
+ st.session_state.results = results
100
+ for i, item in enumerate(results['items']):
101
+ st.write(f"**{i + 1}. {item['title']}**")
102
+ st.write(f"[Link]({item['link']})")
103
+ st.write(f"{item['snippet']}\n")
104
+
105
+ # Check if 'pagemap' and 'cse_image' exist and if 'src' is in 'cse_image'
106
+ if 'pagemap' in item and 'cse_image' in item['pagemap']:
107
+ image_data = item['pagemap']['cse_image'][0]
108
+ image_url = image_data.get('src') # Use .get() to avoid KeyError
109
+
110
+ # Try to load and display the image if 'src' exists
111
+ if image_url:
112
+ try:
113
+ response = requests.get(image_url)
114
+ img = Image.open(BytesIO(response.content))
115
+ st.image(img, width=100)
116
+ except Exception as e:
117
+ st.write("**Image could not be loaded.**")
118
+ else:
119
+ st.write("**Image source not available.**")
120
+ else:
121
+ st.write("No image available for this result.")
122
+ else:
123
+ st.write("No results found.")
124
+
125
+ def update_search_history(query, source):
126
+ # Update search history and analytics data
127
+ st.session_state.search_history.append(query)
128
+ new_data = pd.DataFrame({
129
+ "Query": [query],
130
+ "Source": [source],
131
+ "Timestamp": [pd.Timestamp.now()]
132
+ })
133
+ st.session_state.search_data = pd.concat([st.session_state.search_data, new_data], ignore_index=True)
134
+
135
+ if __name__ == "__main__":
136
+ main()
news.png ADDED

Git LFS Details

  • SHA256: 3b97b1de4fca263499d078ff1e8bb0633f2c3cf2a38683573f4143463a240d62
  • Pointer size: 131 Bytes
  • Size of remote file: 683 kB
news.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ from datetime import datetime, timedelta
6
+
7
+ # Set page configuration
8
+ st.set_page_config(page_title="News Fetcher", layout="wide")
9
+
10
+ # CSS styling for Canva theme
11
+ st.markdown(
12
+ """
13
+ <style>
14
+ /* General styling */
15
+ body {
16
+ font-family: 'Helvetica Neue', Arial, sans-serif;
17
+ background-color: #f8f9fa; /* Light gray background */
18
+ color: #333; /* Dark gray font color */
19
+ }
20
+
21
+ /* Title styling */
22
+ h1 {
23
+ color: #00bcd4; /* Canva teal */
24
+ font-size: 2.5em;
25
+ margin-bottom: 0.5em;
26
+ }
27
+
28
+ /* Sidebar styling */
29
+ .css-18e3th9 {
30
+ background-color: #ffffff; /* White background for sidebar */
31
+ color: #333; /* Dark text color */
32
+ border-right: 1px solid #e0e0e0; /* Light gray border */
33
+ padding: 20px;
34
+ }
35
+
36
+ /* Sidebar header */
37
+ .css-hxt7ib {
38
+ color: #00bcd4; /* Canva teal */
39
+ font-weight: bold;
40
+ }
41
+
42
+ /* Button styling */
43
+ button {
44
+ background-color: #00bcd4 !important; /* Canva teal button */
45
+ color: white !important;
46
+ border: none !important;
47
+ font-weight: bold !important;
48
+ padding: 10px 20px;
49
+ border-radius: 5px;
50
+ }
51
+
52
+ /* Dropdown and input styling */
53
+ .stTextInput, .stDateInput, .stSelectbox {
54
+ border: 1px solid #e0e0e0 !important; /* Light gray border */
55
+ border-radius: 5px !important;
56
+ padding: 10px !important;
57
+ font-size: 1em !important;
58
+ }
59
+
60
+ /* News articles styling */
61
+ .stMarkdown, .stSubheader {
62
+ font-family: 'Helvetica Neue', Arial, sans-serif;
63
+ background-color: #ffffff; /* White background for articles */
64
+ color: #212529; /* Darker gray for articles text */
65
+ padding: 15px;
66
+ border-radius: 8px;
67
+ box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
68
+ }
69
+
70
+ /* Footer styling */
71
+ footer {
72
+ font-size: 0.85em;
73
+ color: #6c757d; /* Gray footer text */
74
+ text-align: center;
75
+ margin-top: 50px;
76
+ padding: 10px;
77
+ border-top: 1px solid #e0e0e0;
78
+ }
79
+
80
+ /* Link styling */
81
+ a {
82
+ color: #00bcd4; /* Canva teal */
83
+ }
84
+
85
+ a:hover {
86
+ color: #0097a7; /* Darker teal on hover */
87
+ }
88
+ </style>
89
+ """,
90
+ unsafe_allow_html=True
91
+ )
92
+
93
+ # Define countries dictionary
94
+ countries = {
95
+ 'us': 'United States',
96
+ 'in': 'India',
97
+ 'gb': 'United Kingdom',
98
+ 'ca': 'Canada',
99
+ 'au': 'Australia',
100
+ 'de': 'Germany',
101
+ 'fr': 'France',
102
+ 'it': 'Italy',
103
+ 'jp': 'Japan',
104
+ 'cn': 'China',
105
+ 'br': 'Brazil',
106
+ 'za': 'South Africa',
107
+ 'ru': 'Russia',
108
+ }
109
+
110
+ def get_news(api_key, query=None, country='us', language='en', from_date=None, to_date=None):
111
+ url = 'https://newsapi.org/v2/everything'
112
+ params = {
113
+ 'apiKey': api_key,
114
+ 'q': query,
115
+ 'from': from_date,
116
+ 'to': to_date,
117
+ 'language': language,
118
+ 'pageSize': 20
119
+ }
120
+
121
+ try:
122
+ response = requests.get(url, params=params)
123
+ response.raise_for_status()
124
+ news_data = response.json()
125
+ if news_data['status'] == 'ok':
126
+ return news_data['articles']
127
+ else:
128
+ st.error("Error fetching news: {}".format(news_data['message']))
129
+ return []
130
+
131
+ except requests.exceptions.RequestException as e:
132
+ st.error("HTTP Request failed: {}".format(e))
133
+ return []
134
+
135
+ # Important queries
136
+ important_queries = [
137
+ "COVID-19", "Technology", "Politics", "Economy", "Health",
138
+ "Environment", "Sports", "Entertainment", "Science",
139
+ "Education", "Travel"
140
+ ]
141
+
142
+ # Streamlit UI setup
143
+ st.title("News Fetcher")
144
+
145
+ # Store and display the last seen timestamp
146
+ if 'last_seen' not in st.session_state:
147
+ st.session_state['last_seen'] = datetime.now()
148
+ else:
149
+ st.session_state['last_seen'] = datetime.now()
150
+ last_seen = st.session_state['last_seen']
151
+
152
+ # Sidebar layout
153
+ st.sidebar.title("Settings")
154
+ st.sidebar.write(f"Last accessed on: {last_seen.strftime('%Y-%m-%d %H:%M:%S')}")
155
+
156
+ # Language selection
157
+ language = st.selectbox("Select your preferred language:",
158
+ options=[
159
+ ('en', 'English'), ('es', 'Spanish'), ('fr', 'French'),
160
+ ('de', 'German'), ('it', 'Italian'), ('pt', 'Portuguese'),
161
+ ('ar', 'Arabic'), ('zh', 'Chinese'), ('hi', 'Hindi'),
162
+ ('te', 'Telugu')
163
+ ])
164
+
165
+ # Country selection in the sidebar
166
+ country = st.sidebar.selectbox("Select your country:", options=list(countries.keys()), format_func=lambda x: countries[x])
167
+
168
+ # Sidebar for important queries
169
+ st.sidebar.header("Important Queries")
170
+ for query in important_queries:
171
+ if st.sidebar.button(query):
172
+ st.session_state.query = query
173
+
174
+ # Input field for user queries
175
+ if 'query' in st.session_state:
176
+ query = st.session_state.query
177
+ else:
178
+ query = st.text_input("Enter a search query:", placeholder="Type something...")
179
+
180
+ # Date pickers for filtering news articles
181
+ st.write("Select the date range for previous news articles:")
182
+ from_date = st.date_input("From", value=datetime.now() - timedelta(days=30))
183
+ to_date = st.date_input("To", value=datetime.now())
184
+
185
+ # Button to fetch news
186
+ if st.button("Fetch News"):
187
+ API_KEY = '43283de608cc43b7a49ad17ceda39636' # Replace with your actual News API key
188
+ news_articles = get_news(API_KEY, query=query, country=country, language=language, from_date=from_date, to_date=to_date)
189
+
190
+ if news_articles:
191
+ for i, article in enumerate(news_articles):
192
+ st.subheader(article['title'])
193
+ st.markdown(f"**Source**: {article['source']['name']} | **Published At**: {article['publishedAt']}")
194
+ st.write(article['description'] or "No description available")
195
+ st.markdown(f"[Read more]({article['url']})")
196
+ st.markdown("---")
197
+
198
+ # Visualization of trends in news topics
199
+ dates = [article['publishedAt'][:10] for article in news_articles]
200
+ date_counts = pd.Series(dates).value_counts().sort_index()
201
+
202
+ st.subheader("Trends in News Topics Over Time")
203
+ plt.figure(figsize=(10, 5))
204
+ plt.plot(date_counts.index, date_counts.values, marker='o')
205
+ plt.xticks(rotation=45)
206
+ plt.xlabel('Date')
207
+ plt.ylabel('Number of Articles')
208
+ plt.title('Frequency of Articles Over Time')
209
+ st.pyplot(plt)
210
+
211
+ else:
212
+ st.write("No articles found.")
213
+
214
+ # Footer
215
+ st.markdown("---")
216
+ st.markdown(
217
+ """
218
+ <footer>
219
+ Developed by SriKrishna | © 2024 | All rights reserved.<br>
220
+ Last accessed on: {}
221
+ </footer>
222
+ """.format(last_seen.strftime('%Y-%m-%d %H:%M:%S')),
223
+ unsafe_allow_html=True
224
+ )
wikipedia.png ADDED

Git LFS Details

  • SHA256: 875f4e59f5ef43cd36503c479ace9171ffe83be0258c2960008844cf5f54c2f3
  • Pointer size: 131 Bytes
  • Size of remote file: 308 kB
wikipedia.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import wikipediaapi
3
+ import datetime
4
+ from reportlab.lib.pagesizes import letter
5
+ from reportlab.pdfgen import canvas
6
+ import tempfile
7
+ from gtts import gTTS
8
+ import speech_recognition as sr
9
+
10
+ # Wikipedia summary function with character limit and summary levels
11
+ def get_wikipedia_summary(query, lang_code, char_limit, summary_level):
12
+ user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)"
13
+ wiki = wikipediaapi.Wikipedia(language=lang_code, extract_format=wikipediaapi.ExtractFormat.WIKI, user_agent=user_agent)
14
+ page = wiki.page(query)
15
+ if not page.exists():
16
+ return "Page not found."
17
+ if summary_level == "Brief":
18
+ return page.summary[:char_limit]
19
+ elif summary_level == "Detailed":
20
+ return page.summary # Full summary
21
+ elif summary_level == "Bullet Points":
22
+ points = page.summary.split('. ')
23
+ return '\n'.join(f"- {p.strip()}" for p in points if p)[:char_limit]
24
+
25
+ # Save chat history as PDF with a user-defined filename
26
+ def save_chat_history_as_pdf(chat_history, file_name):
27
+ timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
28
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
29
+ pdf = canvas.Canvas(tmp_file.name, pagesize=letter)
30
+ pdf.setTitle(file_name)
31
+ pdf.drawString(30, 750, f"{file_name} - Saved on {timestamp}")
32
+ y_position = 720
33
+ for query, response in chat_history:
34
+ pdf.drawString(30, y_position, f"User: {query}")
35
+ y_position -= 20
36
+ pdf.drawString(30, y_position, f"Bot: {response}")
37
+ y_position -= 40
38
+ if y_position < 40:
39
+ pdf.showPage()
40
+ y_position = 750
41
+ pdf.save()
42
+ return tmp_file.name
43
+
44
+ # Text-to-speech using gTTS
45
+ def text_to_speech(text, filename, lang="en"):
46
+ tts = gTTS(text=text, lang=lang)
47
+ tts.save(filename)
48
+ return filename
49
+
50
+ # Voice search function
51
+ def voice_search(lang_code):
52
+ recognizer = sr.Recognizer()
53
+ with sr.Microphone() as source:
54
+ st.write("Listening...")
55
+ audio = recognizer.listen(source)
56
+ try:
57
+ # Recognize the speech based on the specified language
58
+ query = recognizer.recognize_google(audio, language=lang_code)
59
+ st.success(f"You said: {query}")
60
+ return query
61
+ except sr.UnknownValueError:
62
+ st.error("Sorry, I could not understand the audio.")
63
+ return None
64
+ except sr.RequestError as e:
65
+ st.error(f"Could not request results from Google Speech Recognition service; {e}")
66
+ return None
67
+
68
+ # Initialize the Streamlit app
69
+ def main():
70
+ st.set_page_config(page_title="Wikipedia Summary & Text-to-Speech", layout="wide")
71
+
72
+ # Sidebar options
73
+ st.sidebar.title("Options")
74
+ lang_map = {
75
+ "English": "en",
76
+ "Spanish": "es",
77
+ "Chinese": "zh",
78
+ "Hindi": "hi",
79
+ "Telugu": "te"
80
+ }
81
+ selected_lang = st.sidebar.selectbox("Wikipedia Language", list(lang_map.keys()), key="language_selector")
82
+ summary_levels = ["Brief", "Detailed", "Bullet Points"]
83
+ summary_level = st.sidebar.selectbox("Summarization Level", summary_levels)
84
+ char_limit = st.sidebar.slider("Character Limit", min_value=100, max_value=2000, value=500, step=100)
85
+
86
+ # Chat history and favorites in session state
87
+ if "chat_history" not in st.session_state:
88
+ st.session_state.chat_history = []
89
+ if "favorites" not in st.session_state:
90
+ st.session_state.favorites = []
91
+
92
+ st.title("Wikipedia Summary & Text-to-Speech")
93
+
94
+ # Text input for manual search
95
+ query = st.text_input("Enter a topic to search on Wikipedia:")
96
+
97
+ # Button for voice search
98
+ if st.button("Voice Search"):
99
+ lang_code = lang_map[selected_lang] # Get the language code for the selected language
100
+ voice_query = voice_search(lang_code) # Pass the language code to the voice search
101
+ if voice_query:
102
+ query = voice_query # Use the voice query if recognized
103
+
104
+ # Display summary based on query and language selection
105
+ if query:
106
+ lang_code = lang_map[selected_lang]
107
+ summary = get_wikipedia_summary(query, lang_code, char_limit, summary_level)
108
+ st.markdown(f"### Summary for: {query}")
109
+ st.write(summary)
110
+ st.session_state.chat_history.append((query, summary))
111
+
112
+ # Save to favorites
113
+ if st.button("Add to Favorites"):
114
+ st.session_state.favorites.append((query, summary))
115
+ st.success("Added to favorites!")
116
+
117
+ # Text-to-speech
118
+ tts_filename = f"{query}_speech.mp3"
119
+ if st.button("Play Text-to-Speech"):
120
+ text_to_speech(summary, tts_filename, lang=lang_code)
121
+ st.audio(tts_filename, format="audio/mp3")
122
+
123
+ # Save chat history as PDF
124
+ file_name = st.sidebar.text_input("File Name to Save Chat", value="chat_history")
125
+ if st.sidebar.button("Save Chat as PDF"):
126
+ pdf_path = save_chat_history_as_pdf(st.session_state.chat_history, file_name)
127
+ with open(pdf_path, "rb") as pdf_file:
128
+ st.sidebar.download_button("Download PDF", pdf_file, file_name=f"{file_name}.pdf", mime="application/pdf")
129
+
130
+ # Display favorites
131
+ st.sidebar.write("### Favorites")
132
+ for i, (fav_query, fav_summary) in enumerate(st.session_state.favorites, 1):
133
+ st.sidebar.write(f"**{i}. {fav_query}**")
134
+ st.sidebar.write(fav_summary[:100] + "...")
135
+
136
+ if __name__ == "__main__":
137
+ main()
youtube.png ADDED

Git LFS Details

  • SHA256: 9c327977ffe85474a6c37e8f1895763c6adb2cdb79c07300a175dad15c9c586e
  • Pointer size: 131 Bytes
  • Size of remote file: 300 kB
youtube.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ from googleapiclient.discovery import build
4
+ import speech_recognition as sr
5
+ from datetime import datetime
6
+
7
+ # Set up YouTube API
8
+ API_KEY = "AIzaSyA20DXMC3HeqHs9sOMQUQ041wEkgsoFXb4" # Replace with your YouTube Data API v3 key
9
+ youtube = build('youtube', 'v3', developerKey=API_KEY)
10
+
11
+ # Function to search YouTube videos
12
+ def search_youtube(query, max_results=5):
13
+ try:
14
+ request = youtube.search().list(
15
+ q=query,
16
+ part='id,snippet',
17
+ maxResults=max_results,
18
+ type='video'
19
+ )
20
+ response = request.execute()
21
+
22
+ videos = []
23
+ for item in response['items']:
24
+ video_id = item['id']['videoId']
25
+ title = item['snippet']['title']
26
+ thumbnail = item['snippet']['thumbnails']['default']['url']
27
+ url = f'https://www.youtube.com/watch?v={video_id}'
28
+ videos.append({'title': title, 'url': url, 'video_id': video_id, 'thumbnail': thumbnail})
29
+ return videos
30
+ except Exception as e:
31
+ st.write(f"Error fetching videos: {e}")
32
+ return []
33
+
34
+ # Function for voice recognition
35
+ def voice_search():
36
+ recognizer = sr.Recognizer()
37
+ with sr.Microphone() as source:
38
+ st.write("Listening...")
39
+ audio = recognizer.listen(source)
40
+ try:
41
+ query = recognizer.recognize_google(audio)
42
+ st.success(f"You said: {query}")
43
+ return query
44
+ except sr.UnknownValueError:
45
+ st.error("Could not understand audio")
46
+ return ""
47
+ except sr.RequestError as e:
48
+ st.error(f"Could not request results from Google Speech Recognition service; {e}")
49
+ return ""
50
+
51
+ # Streamlit UI
52
+ st.title("YouTube Video Search")
53
+ st.write("Search for YouTube videos using text or voice.")
54
+
55
+ # Button for voice search
56
+ if st.button("Search by Voice"):
57
+ search_query = voice_search()
58
+ else:
59
+ # User search input
60
+ search_query = st.text_input("Enter search query", value="Python programming")
61
+
62
+ if search_query:
63
+ st.write(f"Results for '{search_query}':")
64
+ videos = search_youtube(search_query)
65
+
66
+ # Display videos one by one
67
+ for video in videos:
68
+ st.image(video['thumbnail'])
69
+ st.write(f"**Title:** {video['title']}")
70
+ st.write(f"[Watch on YouTube]({video['url']})")
71
+
72
+ # Add a button to play the video
73
+ st.video(video['url']) # This embeds the YouTube video player
74
+
75
+ st.write("---")
76
+
77
+ # Display last seen date and time
78
+ st.sidebar.write("### Last Seen")
79
+ last_seen_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
80
+ st.sidebar.write(f"Last seen on: {last_seen_time}")
81
+
82
+ # Footer section at the bottom of the page
83
+ st.write("---")
84
+ st.write("### Footer")
85
+ st.write("This application is built for educational purposes.")
86
+ st.write("YouTube Data API is used for video searching.")
87
+ st.write("Developed by SriKrishna")