Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,18 @@
|
|
|
|
1 |
from PIL import Image
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
from transformers import AutoTokenizer, AutoModel
|
5 |
-
|
6 |
-
|
7 |
|
8 |
def get_image_embedding(image):
|
9 |
-
return {"embedding": "img_emb.tolist()"}
|
10 |
|
11 |
def get_text_embedding(text):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Tokenize the input text
|
19 |
-
text = "Your input text goes here"
|
20 |
-
inputs = tokenizer(text, return_tensors='pt')
|
21 |
-
|
22 |
-
# Get embeddings from the model
|
23 |
-
with torch.no_grad():
|
24 |
-
outputs = model(**inputs)
|
25 |
-
embeddings = outputs.last_hidden_state
|
26 |
-
|
27 |
-
# Process embeddings (e.g., take the mean of all token embeddings)
|
28 |
-
sentence_embedding = embeddings.mean(dim=1)
|
29 |
-
return {"embedding": sentence_embedding}
|
30 |
|
31 |
image_embedding = gr.Interface(fn=get_image_embedding, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="Image Embedding")
|
32 |
text_embedding = gr.Interface(fn=get_text_embedding, inputs=gr.Textbox(), outputs=gr.JSON(), title="Text Embedding")
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, util
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
|
|
|
|
5 |
|
6 |
def get_image_embedding(image):
|
7 |
+
return {"embedding": "img_emb.tolist()")}
|
8 |
|
9 |
def get_text_embedding(text):
|
10 |
+
multilingual_text_model = SentenceTransformer('Alibaba-NLP/gte-Qwen2-1.5B-instruct')
|
11 |
+
text_emb = multilingual_text_model.encode(text)
|
12 |
+
print(text_emb)
|
13 |
+
print(type(text_emb))
|
14 |
+
print(text_emb.ndim)
|
15 |
+
return {"embedding": text_emb.tolist()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
image_embedding = gr.Interface(fn=get_image_embedding, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="Image Embedding")
|
18 |
text_embedding = gr.Interface(fn=get_text_embedding, inputs=gr.Textbox(), outputs=gr.JSON(), title="Text Embedding")
|