gschurck commited on
Commit
72b2cdd
·
verified ·
1 Parent(s): e6b0544

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -10
app.py CHANGED
@@ -1,20 +1,32 @@
1
- from sentence_transformers import SentenceTransformer, util
2
  from PIL import Image
3
  import gradio as gr
4
  import requests
 
 
 
5
 
6
  def get_image_embedding(image):
7
- image_model = SentenceTransformer('clip-ViT-B-32')
8
- img_emb = image_model.encode(image)
9
- return {"embedding": img_emb.tolist()}
10
 
11
  def get_text_embedding(text):
12
- multilingual_text_model = SentenceTransformer('gte-Qwen2-1.5B-instruct')
13
- text_emb = multilingual_text_model.encode(text)
14
- print(text_emb)
15
- print(type(text_emb))
16
- print(text_emb.ndim)
17
- return {"embedding": text_emb.tolist()}
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  image_embedding = gr.Interface(fn=get_image_embedding, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="Image Embedding")
20
  text_embedding = gr.Interface(fn=get_text_embedding, inputs=gr.Textbox(), outputs=gr.JSON(), title="Text Embedding")
 
 
1
  from PIL import Image
2
  import gradio as gr
3
  import requests
4
+ from transformers import AutoTokenizer, AutoModel
5
+
6
+
7
 
8
  def get_image_embedding(image):
9
+ return {"embedding": "img_emb.tolist()"}
 
 
10
 
11
  def get_text_embedding(text):
12
+ # Load the tokenizer
13
+ tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-Qwen2-1.5B-instruct")
14
+
15
+ # Load the model
16
+ model = AutoModel.from_pretrained("Alibaba-NLP/gte-Qwen2-1.5B-instruct")
17
+
18
+ # Tokenize the input text
19
+ text = "Your input text goes here"
20
+ inputs = tokenizer(text, return_tensors='pt')
21
+
22
+ # Get embeddings from the model
23
+ with torch.no_grad():
24
+ outputs = model(**inputs)
25
+ embeddings = outputs.last_hidden_state
26
+
27
+ # Process embeddings (e.g., take the mean of all token embeddings)
28
+ sentence_embedding = embeddings.mean(dim=1)
29
+ return {"embedding": sentence_embedding}
30
 
31
  image_embedding = gr.Interface(fn=get_image_embedding, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="Image Embedding")
32
  text_embedding = gr.Interface(fn=get_text_embedding, inputs=gr.Textbox(), outputs=gr.JSON(), title="Text Embedding")