Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,32 @@
|
|
1 |
-
from sentence_transformers import SentenceTransformer, util
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
|
|
|
|
5 |
|
6 |
def get_image_embedding(image):
|
7 |
-
|
8 |
-
img_emb = image_model.encode(image)
|
9 |
-
return {"embedding": img_emb.tolist()}
|
10 |
|
11 |
def get_text_embedding(text):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
image_embedding = gr.Interface(fn=get_image_embedding, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="Image Embedding")
|
20 |
text_embedding = gr.Interface(fn=get_text_embedding, inputs=gr.Textbox(), outputs=gr.JSON(), title="Text Embedding")
|
|
|
|
|
1 |
from PIL import Image
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
|
6 |
+
|
7 |
|
8 |
def get_image_embedding(image):
|
9 |
+
return {"embedding": "img_emb.tolist()"}
|
|
|
|
|
10 |
|
11 |
def get_text_embedding(text):
|
12 |
+
# Load the tokenizer
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-Qwen2-1.5B-instruct")
|
14 |
+
|
15 |
+
# Load the model
|
16 |
+
model = AutoModel.from_pretrained("Alibaba-NLP/gte-Qwen2-1.5B-instruct")
|
17 |
+
|
18 |
+
# Tokenize the input text
|
19 |
+
text = "Your input text goes here"
|
20 |
+
inputs = tokenizer(text, return_tensors='pt')
|
21 |
+
|
22 |
+
# Get embeddings from the model
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model(**inputs)
|
25 |
+
embeddings = outputs.last_hidden_state
|
26 |
+
|
27 |
+
# Process embeddings (e.g., take the mean of all token embeddings)
|
28 |
+
sentence_embedding = embeddings.mean(dim=1)
|
29 |
+
return {"embedding": sentence_embedding}
|
30 |
|
31 |
image_embedding = gr.Interface(fn=get_image_embedding, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="Image Embedding")
|
32 |
text_embedding = gr.Interface(fn=get_text_embedding, inputs=gr.Textbox(), outputs=gr.JSON(), title="Text Embedding")
|