Spaces:
Sleeping
Sleeping
from PIL import Image | |
import gradio as gr | |
import requests | |
from transformers import AutoTokenizer, AutoModel | |
def get_image_embedding(image): | |
return {"embedding": "img_emb.tolist()"} | |
def get_text_embedding(text): | |
# Load the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-Qwen2-1.5B-instruct") | |
# Load the model | |
model = AutoModel.from_pretrained("Alibaba-NLP/gte-Qwen2-1.5B-instruct") | |
# Tokenize the input text | |
text = "Your input text goes here" | |
inputs = tokenizer(text, return_tensors='pt') | |
# Get embeddings from the model | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
embeddings = outputs.last_hidden_state | |
# Process embeddings (e.g., take the mean of all token embeddings) | |
sentence_embedding = embeddings.mean(dim=1) | |
return {"embedding": sentence_embedding} | |
image_embedding = gr.Interface(fn=get_image_embedding, inputs=gr.Image(type="pil"), outputs=gr.JSON(), title="Image Embedding") | |
text_embedding = gr.Interface(fn=get_text_embedding, inputs=gr.Textbox(), outputs=gr.JSON(), title="Text Embedding") | |
space = gr.TabbedInterface([image_embedding, text_embedding], ["Image Embedding", "Text Embedding"]) | |
space.launch() |