kateforsberg's picture
updated vector store retrieval
ccb4963
raw
history blame
14.2 kB
from __future__ import annotations
import json
import logging
import os
import random
from abc import abstractmethod
from pathlib import Path
from typing import TYPE_CHECKING, cast
import requests
from dotenv import load_dotenv
from griptape.artifacts import ListArtifact, TextArtifact, InfoArtifact, BaseArtifact
from griptape.configs import Defaults
from griptape.configs.drivers import (
OpenAiDriversConfig,
)
from griptape.drivers import (
GriptapeCloudVectorStoreDriver,
LocalStructureRunDriver,
OpenAiChatPromptDriver,
)
from griptape.engines.rag import RagEngine
from griptape.engines.rag.modules import (
TextChunksResponseRagModule,
VectorStoreRetrievalRagModule,
)
from griptape.engines.rag.stages import ResponseRagStage, RetrievalRagStage
from griptape.events import (
BaseEvent,
EventBus,
EventListener,
FinishStructureRunEvent,
)
from griptape.memory.structure import ConversationMemory
from griptape.rules import Rule, Ruleset
from griptape.structures import Agent, Workflow
from griptape.tasks import CodeExecutionTask, StructureRunTask, ToolTask
from griptape.tools import RagTool
from statemachine import State, StateMachine
from statemachine.factory import StateMachineMetaclass
from parsers import UWConfigParser
from uw_programmatic.single_question_machine import SingleQuestion
logger = logging.getLogger(__name__)
logging.getLogger("griptape").setLevel(logging.ERROR)
if TYPE_CHECKING:
from griptape.structures import Structure
from griptape.tools import BaseTool
from statemachine.event import Event
load_dotenv()
# Sets max tokens and OpenAI as the driver.
Defaults.drivers_config = OpenAiDriversConfig(
prompt_driver=OpenAiChatPromptDriver(model="gpt-4o", max_tokens=4096)
)
def custom_dict_merge(dict1: dict, dict2: dict) -> dict:
result = dict1.copy()
for key, value in dict2.items():
if key in result and isinstance(result[key], list) and isinstance(value, list):
result[key] = result[key] + value
else:
result[key] = value
return result
class UWBaseMachine(StateMachine):
"""Base class for a machine.
Attributes:
config_file (Path): The path to the configuration file.
config (dict): The configuration data.
outputs_to_user (list[str]): Outputs to return to the user.
"""
def __init__(self, config_file: Path, **kwargs) -> None:
self.config_parser = UWConfigParser(config_file)
self.config = self.config_parser.parse()
self._structures = {}
self.vector_stores = {} # Store here in case needs multiple uses
self.question_list: list = []
# For the parameters necessary from the user
self.page_range: tuple = ()
self.question_number: int = 0
self.taxonomy: list = []
# To track give up
self.give_up_count = 0
self.current_question_count = 0
# To keep vector stores on track
self.kb_ids = {}
self.rejected_questions: list = []
self.errored: bool = False
self.state_status: dict[str, bool] = {}
for key in self.state_transitions:
self.state_status[key] = False
def on_event(event: BaseEvent) -> None:
"""Takes in griptape events from eventbus and fixes them."""
print(f"Received Griptape event: {json.dumps(event.to_dict(), indent=2)}")
try:
self.send(
"process_event",
event_={"type": "griptape_event", "value": event.to_dict()},
)
except Exception as e:
errormsg = f"Would not allow process_event to be sent. Check to see if it is defined in the config.yaml. Error:{e}"
raise ValueError(errormsg) from e
EventBus.clear_event_listeners()
EventBus.add_event_listener(
EventListener(on_event, event_types=[FinishStructureRunEvent]),
)
super().__init__()
@property
def available_events(self) -> list[str]:
return self.current_state.transitions.unique_events
@property
@abstractmethod
def tools(self) -> dict[str, BaseTool]:
"""Returns the Tools for the machine."""
...
@property
def _current_state_config(self) -> dict:
return self.config["states"][self.current_state_value]
@classmethod
def from_definition( # noqa: C901, PLR0912
cls, definition: dict, **extra_kwargs
) -> UWBaseMachine:
try:
states_instances = {}
for state_id, state_kwargs in definition["states"].items():
# These are the relevant states that need GOAP.
states_instances[state_id] = State(**state_kwargs, value=state_id)
except Exception as e:
errormsg = f"""Error in state definition: {e}.
"""
raise ValueError(errormsg) from e
events = {}
state_transitions = {}
for event_name, transitions in definition["events"].items():
for transition_data in transitions:
try:
source_name = transition_data["from"]
source = states_instances[source_name]
target = states_instances[transition_data["to"]]
relevance = ""
if "relevance" in transition_data:
relevance = transition_data["relevance"]
if source_name not in state_transitions:
state_transitions[source_name] = {event_name: relevance}
else:
state_transitions[source_name][event_name] = relevance
except Exception as e:
errormsg = f"Error:{e}. Please check your transitions to be sure each transition has a source and destination."
raise ValueError(errormsg) from e
transition = source.to(
target,
event=event_name,
cond=transition_data.get("cond"),
unless=transition_data.get("unless"),
on=transition_data.get("on"),
internal=transition_data.get("internal"),
)
if event_name in events:
events[event_name] |= transition
else:
events[event_name] = transition
for state_id, state in states_instances.items():
if state_id not in ("end", "start"):
transition = state.to(
state,
event="process_event",
on=f"on_event_{state_id}",
internal=True,
)
if "process_event" in events:
events["process_event"] |= transition
else:
events["process_event"] = transition
attrs_mapper = {
**extra_kwargs,
**states_instances,
**events,
"state_transitions": state_transitions,
}
return cast(
UWBaseMachine,
StateMachineMetaclass(cls.__name__, (cls,), attrs_mapper)(**extra_kwargs),
)
@classmethod
def from_config_file(
cls,
config_file: Path,
**extra_kwargs,
) -> UWBaseMachine:
"""Creates a StateMachine class from a configuration file"""
config_parser = UWConfigParser(config_file)
config = config_parser.parse()
extra_kwargs["config_file"] = config_file
definition_states = {
state_id: {
"initial": state_value.get("initial", False),
"final": state_value.get("final", False),
}
for state_id, state_value in config["states"].items()
}
definition_events = {
event_name: list(event_value["transitions"])
for event_name, event_value in config["events"].items()
}
definition = {"states": definition_states, "events": definition_events}
return cls.from_definition(definition, **extra_kwargs)
@abstractmethod
def start_machine(self) -> None:
"""Starts the machine."""
...
def reset_structures(self) -> None:
"""Resets the structures."""
self._structures = {}
def on_enter_state(self, source: State, state: State, event: Event) -> None:
print(f"Transitioning from {source} to {state} with event {event}")
def get_structure(self, structure_id: str) -> Structure:
global_structure_config = self.config["structures"][structure_id]
state_structure_config = self._current_state_config.get("structures", {}).get(
structure_id, {}
)
structure_config = custom_dict_merge(
global_structure_config, state_structure_config
)
if structure_id not in self._structures:
# Initialize Structure with all the expensive setup
structure = Agent(
id=structure_id,
conversation_memory=ConversationMemory(),
)
self._structures[structure_id] = structure
# Create a new clone with state-specific stuff
structure = self._structures[structure_id]
structure = Agent(
id=structure.id,
prompt_driver=structure.prompt_driver,
conversation_memory=structure.conversation_memory,
rulesets=[
*self._get_structure_rulesets(structure_config.get("ruleset_ids", [])),
],
)
print(f"Structure: {structure_id}")
for ruleset in structure.rulesets:
for rule in ruleset.rules:
print(f"Rule: {rule.value}")
return structure
def _get_structure_rulesets(self, ruleset_ids: list[str]) -> list[Ruleset]:
ruleset_configs = [
self.config["rulesets"][ruleset_id] for ruleset_id in ruleset_ids
]
# Convert ruleset configs to Rulesets
return [
Ruleset(
name=ruleset_config["name"],
rules=[Rule(rule) for rule in ruleset_config["rules"]],
)
for ruleset_config in ruleset_configs
]
def retrieve_vector_stores(self) -> None:
base_url = "https://cloud.griptape.ai/api/"
kb_url = f"{base_url}/knowledge-bases"
headers = {"Authorization": f"Bearer {os.getenv('GT_CLOUD_API_KEY')}"}
response = requests.get(url=kb_url, headers=headers)
response.raise_for_status()
all_kbs = {}
if response.status_code == 200:
data = response.json()
next_page = data["pagination"]["next_page"]
while next_page is not None:
for kb in data["knowledge_bases"]:
name = kb["name"]
kb_id = kb["knowledge_base_id"]
if "KB_section" in name:
all_kbs[name] = kb_id
page_url = kb_url + f"?page={next_page}"
response = requests.get(url=page_url, headers=headers)
response.raise_for_status()
data = response.json()
next_page = data["pagination"]["next_page"]
else:
raise ValueError(response.status_code)
self.kb_ids = all_kbs
# ALL METHODS RELATING TO THE WORKFLOW AND PIPELINE ARE BELOW THIS LINE
# This is the overarching workflow. Creates a workflow with get_single_question x amount of times.
# def get_questions_workflow(self) -> Workflow:
workflow = Workflow(id="create_question_workflow")
# How many questions still need to be created?
for _ in range(self.question_number - len(self.question_list)):
task = StructureRunTask(
structure_run_driver=LocalStructureRunDriver(
create_structure=self.get_single_question
),
child_ids=["end_task"],
)
# Create X amount of workflows to run for X amount of questions needed.
workflow.add_task(task)
end_task = CodeExecutionTask(id="end_task", on_run=self.end_workflow)
workflow.add_task(end_task)
return workflow
def workflow_cet(self, task: CodeExecutionTask) -> BaseArtifact:
question_machine = SingleQuestion.create_statemachine(
self.taxonomy, self.kb_ids, self.page_range
)
question_machine.send("start_up")
if question_machine.rejected:
if question_machine.reject_reason == "BAD KB PAGE RANGE":
return InfoArtifact("Bad KB Range")
self.rejected_questions.append(question_machine.generated_question)
return InfoArtifact("Question is Rejected")
return TextArtifact(question_machine.generated_question)
def get_questions_workflow(self) -> Workflow:
workflow = Workflow(id="create_question_workflow")
# How many questions still need to be created?
for _ in range(self.question_number - len(self.question_list)):
task = CodeExecutionTask(
on_run=self.workflow_cet,
child_ids=["end_task"],
)
# Create X amount of workflows to run for X amount of questions needed.
workflow.add_task(task)
end_task = CodeExecutionTask(id="end_task", on_run=self.end_workflow)
workflow.add_task(end_task)
return workflow
# Ends the get_questions_workflow. Compiles all workflow outputs into one output.
def end_workflow(self, task: CodeExecutionTask) -> ListArtifact:
parent_outputs = task.parent_outputs
questions = []
for outputs in parent_outputs.values():
if outputs.type == "InfoArtifact":
if outputs.value == "Bad KB Range":
self.errored = True
self.send("error_to_start")
return ListArtifact([])
continue
questions.append(outputs)
return ListArtifact(questions)