Kate Forsberg
updated to include KB selector
02585f2
raw
history blame
6.63 kB
import glob
from venv import create
import gradio as gr
from typing import Any
from dotenv import load_dotenv
import requests
from griptape.structures import Agent
from griptape.tasks import PromptTask
from griptape.drivers import (
LocalConversationMemoryDriver,
GriptapeCloudStructureRunDriver,
LocalFileManagerDriver,
LocalStructureRunDriver,
GriptapeCloudConversationMemoryDriver,
)
from griptape.memory.structure import ConversationMemory
from griptape.tools import StructureRunTool, FileManagerTool
from griptape.rules import Rule, Ruleset
from griptape.configs.drivers import AnthropicDriversConfig
from griptape.configs import Defaults
import time
import os
from urllib.parse import urljoin
# Load environment variables
load_dotenv()
Defaults.drivers_config = AnthropicDriversConfig()
base_url = "https://cloud.griptape.ai"
headers_api = {
"Authorization": f"Bearer {os.environ['GT_CLOUD_API_KEY']}",
"Content-Type": "application/json",
}
threads = {}
def create_thread_id(session_id: str) -> str:
if not session_id in threads:
params = {
"name": session_id,
"messages": [],
}
response = requests.post(
url=urljoin(base_url, "/api/threads"), headers=headers_api, json=params
)
response.raise_for_status()
thread_id = response.json()["thread_id"]
threads[session_id] = thread_id
return thread_id
else:
return threads[session_id]
# Create an agent that will create a prompt that can be used as input for the query agent from the Griptape Cloud.
# Function that logs user history - adds to history parameter of Gradio
# TODO: Figure out the exact use of this function
def user(user_message, history):
history.append([user_message, None])
return ("", history)
# Function that logs bot history - adds to the history parameter of Gradio
# TODO: Figure out the exact use of this function
def bot(history):
response = send_message(history[-1][0])
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.005)
yield history
def create_prompt_task(session_id: str, message: str) -> PromptTask:
return PromptTask(
f"""
Re-structure the values to form a query from the user's questions: '{message}' and the input value from the conversation memory. Leave out attributes that aren't important to the user:
""",
)
def build_talk_agent(session_id: str, message: str) -> Agent:
create_thread_id(session_id)
ruleset = Ruleset(
name="Local Gradio Agent",
rules=[
Rule(
value="You are responsible for structuring a user's questions into a specific format for a query."
),
Rule(
value="""You ask the user follow-up questions to fill in missing information for:
years experience,
location,
role,
skills,
expected salary,
availability,
past companies,
past projects,
show reel details
"""
),
Rule(
value="Return the current query structure and any questions to fill in missing information."
),
],
)
return Agent(
conversation_memory=ConversationMemory(
conversation_memory_driver=GriptapeCloudConversationMemoryDriver(
thread_id=threads[session_id],
)
),
tasks=[create_prompt_task(session_id, message)],
rulesets=[ruleset],
)
# Creates an agent for each run
# The agent uses local memory, which it differentiates between by session_hash.
def build_agent(session_id: str, message: str, kbs:str) -> Agent:
create_thread_id(session_id)
ruleset = Ruleset(
name="Local Gradio Agent",
rules=[
Rule(
value="You are responsible for structuring a user's questions into a query and then querying."
),
Rule(
value="Only return the result of the query, do not provide additional commentary."
),
Rule(value="Only perform one task at a time."),
Rule(
value="Do not perform the query unless the user has said 'Done' with formulating."
),
Rule(
value="Only perform the query as one string argument."
),
Rule(
value="If you reformulate the query, then you must ask the user if they are 'Done' again."
),
Rule(
value="If the user says they want to start over, then you must delete the conversation memory file."
),
],
)
query_client = StructureRunTool(
name="QueryResumeSearcher",
description=f"""Use it to search for a candidate with the query.
Add this as another argument after the input: {kbs}
""",
driver=GriptapeCloudStructureRunDriver(
structure_id=os.getenv("GT_STRUCTURE_ID"),
api_key=os.getenv("GT_CLOUD_API_KEY"),
structure_run_wait_time_interval=3,
structure_run_max_wait_time_attempts=30,
),
)
talk_client = StructureRunTool(
name="FormulateQueryFromUser",
description="Used to formulate a query from the user's input.",
driver=LocalStructureRunDriver(
structure_factory_fn=lambda: build_talk_agent(session_id, message),
),
)
return Agent(
conversation_memory=ConversationMemory(
conversation_memory_driver=GriptapeCloudConversationMemoryDriver(
thread_id=threads[session_id],
)
),
tools=[talk_client, query_client],
rulesets=[ruleset],
)
def send_message(message: str, history, knowledge_bases, request: gr.Request) -> Any:
if request:
session_hash = request.session_hash
agent = build_agent(session_hash, message, str(knowledge_bases))
response = agent.run(message)
return response.output.value
with gr.Blocks() as demo:
knowledge_bases = gr.CheckboxGroup(choices=["skills","demographics","linked_in","showreels"])
chatbot = gr.ChatInterface(fn=send_message, additional_inputs=knowledge_bases)
demo.launch(auth=(os.environ.get("GRADIO_USERNAME"), os.environ.get("GRADIO_PASSWORD")))
# demo.launch(share=True)
# Set it back to empty when a session is done
# Is there a better way?
threads = {}